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CSE 326: Data 
Structures

Lecture #20

Really, Really
Hard Problems

Henry Kautz

Winter 
Quarter 

2002

Today’s Agenda
• Solving pencil-on-paper puzzles

– A “deep”  algorithm for Euler Circuits

• Euler with a twist: Hamiltonian 
circuits

• Hamiltonian circuits and NP 
complete problems

• The NP =? P problem
– Your chance to win a Turing award!
– Any takers?

• Weiss Chapter 9.7
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W. R. Hamilton
(1805-1865)

L. Euler
(1707-1783)

It’ s Puzzle Time!

Which of these can you draw without lifting your 
pencil, drawing each line only once?
Can you start and end at the same point?

Historical Puzzle: Seven Bridges of 
Königsberg

KNEIPHOFF

PREGEL

Want to cross all bridges but…
Can cross each bridge only once (High toll to cross twice?!)

A “Multigraph”  for the Bridges of 
Königsberg

Find a path that
traverses every edge
exactly once

Euler Circuits and Tours
• Euler tour: a path through a graph that visits each edge 

exactly once
• Euler circuit: an Euler tour that starts and ends at the same 

vertex
• Named after Leonhard Euler (1707-1783), who cracked this 

problem and founded graph theory in 1736
• Some observations for undirected graphs:

– An Euler circuit is only possible if the graph is connected and 
each vertex has even degree (= # of edges on the vertex) [Why?]

– An Euler tour is only possible if the graph is connected and 
either all vertices have even degree or exactly two have odd 
degree [Why?]
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Euler Circuits and Tours
• Euler tour: a path through a graph that visits each edge 

exactly once
• Euler circuit: an Euler tour that starts and ends at the same 

vertex
• Named after Leonhard Euler (1707-1783), who cracked this 

problem and founded graph theory in 1736
• Some observations for undirected graphs:

– An Euler circuit is only possible if the graph is connected and 
each vertex has even degree (= # of edges on the vertex)
• Need one edge to get into vertex and one edge to get out

– An Euler tour is only possible if the graph is connected and 
either all vertices have even degree or exactly two have odd 
degree 
• Could start at one odd vertex and end at the other

Euler Circuit Problem

• Problem: Given an undirected graph G = (V,E), 
find an Euler circuit in G

• Note: Can check if one exists in linear time 
(how?)

• Given that an Euler circuit exists, how do we 
construct an Euler circuit for G?

• Hint: Think deep! We’ve discussed the answer in 
depth before…

Finding Euler Circuits: DFS and 
then Splice

• Given a graph G = (V,E), find an Euler 
circuit in G
– Can check if one exists in O(|V|) time 

(check degrees)
• Basic Euler Circuit Algorithm: 

1. Do a depth-first search (DFS) from a 
vertex until you are back at this vertex

2. Pick a vertex on this path with an 
unused edge and repeat 1. 

3. Splice all these paths into an Euler
circuit

• Running time = O(|V| + |E|)

Euler Circuit Example
A

B C

D E

F

B C

D E

G G

D E

G

DFS(A) :
A B D F E C A

DFS(B) :
B G C B

DFS(G) :
G D E G

A B G C B D F E C A A B G D E G C B D F E C ASplice at B

Splice 
at G

Euler with a Twist: Hamiltonian 
Circuits

• Euler circuit: A cycle that goes through 
each edge exactly once

• Hamiltonian circuit: A cycle that goes 
through each vertex exactly once

• Does graph I have:
– An Euler circuit?
– A Hamiltonian circuit?

• Does graph I I have:
– An Euler circuit?
– A Hamiltonian circuit?

B C

D E

G

B C

D E

G I

I I

Finding Hamiltonian Circuits in 
Graphs

• Problem: Find a Hamiltonian circuit in a graph G = (V,E)
– Sub-problem: Does G contain a Hamiltonian circuit?

– No known easy algorithm for checking this…

• One solution: Search through all paths to find one that 
visits each vertex exactly once
– Can use your favorite graph search algorithm (DFS!) to find 

various paths

• This is an exhaustive search (“brute force”) algorithm

• Worst case � need to search all paths

– How many paths??
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Analysis of our Exhaustive Search 
Algorithm

• Worst case � need to search all paths

– How many paths?

• Can depict these paths as a search tree

• Let the average branching factor of 
each node in this tree be B

• |V| vertices, each with ≈ B branches

• Total number of paths ≈ B·B·B … ·B

= O(B|V|)

• Worst case � Exponential time!

B C

D E

G

B

D      G       C

G  E    D  E  C G  E  
Etc.

Search tree of paths from B

How bad is exponential time?
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Review: Polynomial versus 
Exponential Time

• Most of our algorithms so far have been O(log N), 
O(N), O(N log N) or O(N2) running time for inputs 
of size N

– These are all polynomial time algorithms

– Their running time is O(Nk) for some k > 0

• Exponential time BN is asymptotically worse than
any polynomial function Nk for any k

– For any k, Nk is Ω(BN) for any constant B > 1

The Complexity Class P
• The set P is defined as the set of all problems that 

can be solved in polynomial worse case time
– Also known as the polynomial timecomplexity class

– All problems that have some algorithmwhose 
running time is O(Nk) for some k

• Examples of problems in P: tree search, sorting, 
shortest path, Euler circuit, etc.

The Complexity Class NP
• Definition: NP is the set of all problems for which a 

given candidate solution can be tested in 
polynomial time

• Example of a problem in NP:

– Hamiltonian circuit problem: Why is it in NP?

The Complexity Class NP
• Definition: NP is the set of all problems for which a 

given candidate solution can be tested in 
polynomial time

• Example of a problem in NP:

– Hamiltonian circuit problem: Why is it in NP?
• Given a candidate path, can test in linear time if it is a 

Hamiltonian circuit – just check if all vertices are visited 
exactly once in the candidate path (except start/finish 
vertex)
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Why NP?
• NP stands for Nondeterministic Polynomial time

– Why “nondeterministic”? Corresponds to algorithms that can 
search all possible solutions in parallel and pick the correct 
one � each solution can be checked in polynomial time

– Nondeterministic algorithms don’ t exist – purely theoretical 
idea invented to understand how hard a problem could be

• Examples of problems in NP:
– Hamiltonian circuit: Given a candidate path, can test in linear 

time if it is a Hamiltonian circuit 

– Sorting: Can test in linear time if a candidate ordering is 
sorted

– Are any other problems in P also in NP?

More Revelations About NP

• Are any other problems in P also in NP?

– YES! All problems in P are also in NP 
• Notation: P ⊆ NP
• If you can solve a problem in polynomial time, can 

definitely verify a solution in polynomial time

• Question: Are all problems in NP also in P?

– Is NP ⊆ P?

Your Chance to Win a Turing 
Award: P = NP?

• Nobody knows whether NP ⊆ P
– Proving or disproving this will bring you instant 

fame!

• It is generally believed that P ≠ NP, i.e. there are 
problems in NP that are not in P
– But no one has been able to show even one such 

problem!

– Practically all of modern complexity theory is 
premised on the assumption that P ≠ NP

• A very large number of useful problems are in NP

Alan Turing
(1912-1954)

NP-Complete Problems
• The “hardest”  problems in NP are called NP-complete

problems (NPC)

• Why “hardest”?A problem X is NP-complete iff:
1. X is in NP and 

2. Any problem Y in NP can be converted to an instance of X in 
polynomial time, such that solving X also provides a solution 
for Y

In other words: Can use algorithm for X as asubroutine to solve Y

• Thus, if you find a poly time algorithm for just one NPC 
problem, all problems in NP can be solved in poly time 
– Example: The Hamiltonian circuit problem can be shown to be NP-

complete (not so easy to prove!)

Searching Really Big Graphs

• Any kind of search (DFS, BFS, A*) is polynomial 
in the size of the graph (number of vertices)

• But a search problem might be NP-complete in 
terms of a small description of a very large graph

• Example: Blocks World
– O(|V|) to find a shortest path between any two vertices

– But if given only the initial and final states(size of 
these descriptions is ≈ number of blocks), problem is 
NP-complete

P, NP, and Exponential Time 
Problems

• All currently known
algorithms for NP-complete 
problems run in exponential
worst case time
– Finding a polynomial time 

algorithm for any NPC 
problem would mean:

• Diagram depicts relationship 
between P, NP, and EXPTIME 
(class of problems that 
provably require exponential 
time to solve)

It is believed that 
P ≠ NP ≠ EXPTIME

EXPTIME

NP

P

NPC
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The Graph of NP-Completeness
• Stephen Cook first showed 

(1971) that satisfiability of 
Boolean formulas (SAT) is NP-
complete

• Hundreds of other problems 
(from scheduling and databases 
to optimization theory) have 
since been shown to be NPC

• How? By showing an algorithm 
that converts a known NPC 
problem to your pet problem in 
poly time � then, your 
problem is also NPC!

Showing NP-completeness: An example

• Consider the Traveling 
Salesperson (TSP) Problem: 
Given a fully connected, weighted
graph G = (V,E), is there a cycle 
that visits all vertices exactly once 
and has total cost ≤ K?

• TSP is in NP (why?)
• Can we show TSP is NP-

complete?
– Hamiltonian Circuit (HC) is NPC
– Can show TSP is also NPC if we 

can convert any input for HC to 
an input for TSP in poly time

B C

D E

G

Input for HC

B C

D E

Convert
to input
for TSP

Cycle
with cost
≤ 8  �
BDCEB

3

3

1

1
2

4

TSP is NP-complete!
• We can show TSP is also NPC if we can convert any 

input for HC to an input for TSP in polynomial time. 
Here’s one way:

B C

D E

G

B C

D E

G

This graph has a Hamiltonian circuit iff this fully-connected graph 
has a TSP cycle of total cost ≤ K, where K = |V|  (here, K = 5)

HC TSP

2 2

1 1

1

1

1

1

1
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Coping with NP-Completeness

1. Settle for algorithms that are fast on average: Worst case still 
takes exponential time, but doesn’ t occur very often. But some
NP-Complete problems are also average-time NP-Complete!

2. Settle for fast algorithms that give near-optimal solutions: In 
TSP, may not give the cheapest tour, but maybe good enough. 
But finding even approximate solutions to some NP-Complete 
problems is NP-Complete!

3. Just get the exponent as low as possible!  Much work on 
exponential algorithms for Boolean satisfiability: in practice can 
usually solve problem with 1,000+ variables
- Hot Application: Microprocessor Design Verification

Calendar
• Coming Up – Specialized Data Structures

– Search Trees for Spatial Data (Class notes)
– Binomial Queues (Ch 6.8)
– Randomized Data Structures (Ch 10.4.2, 12.5)
– Huffman Codes (10.1.2)

• Friday, March 8th – Practice homework 
– Not to be turned in – a solution set will be handed out on the last day 

of class
– Doing this assignment will be a very good way to prepare for the

midterm!

• Homework #7 (Mazes) due Wednesday, March 13th

– NO late assignments accepted after Friday, March 15th – we mean it!

• Friday, March 15th – Last day of class – party – demos –
celebration

• Monday, March 18th, 2:30 – 4:20 pm – Final Exam


