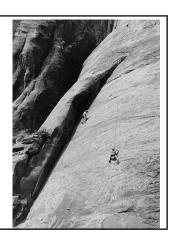
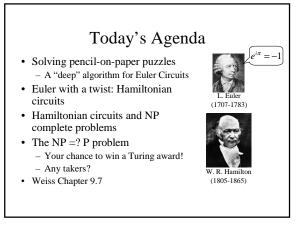
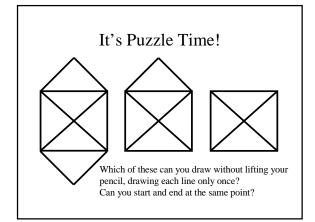
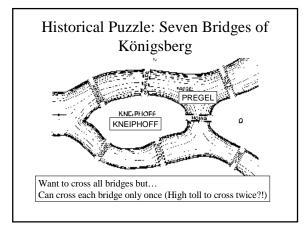
CSE 326: Data Structures Lecture #20 Really, *Really* Hard Problems

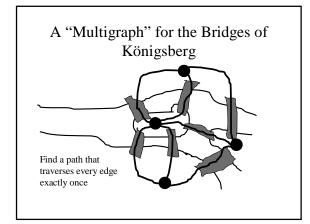
> Henry Kautz Winter Quarter 2002

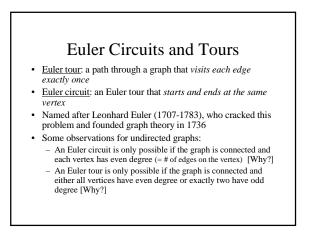










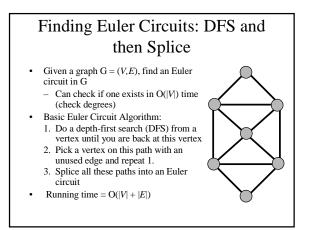


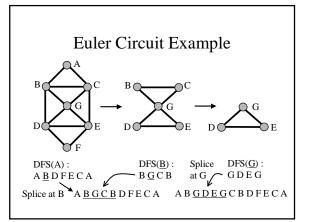
Euler Circuits and Tours

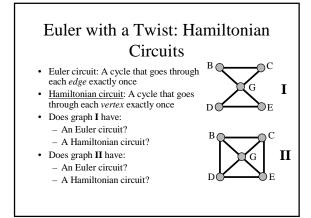
- Euler tour: a path through a graph that visits each edge
- exactly once Euler circuit: an Euler tour that starts and ends at the same
- vertex
 Named after Leonhard Euler (1707-1783), who cracked this problem and founded graph theory in 1736
- Some observations for undirected graphs:
 - An Euler circuit is only possible if the graph is connected and each vertex has even degree (= # of edges on the vertex)
 Need one edge to get into vertex and one edge to get out
 - An Euler tour is only possible if the graph is connected and either all vertices have even degree or exactly two have odd degree
 - · Could start at one odd vertex and end at the other

Euler Circuit Problem

- <u>Problem</u>: Given an undirected graph G = (V, E), find an Euler circuit in G
- Note: Can check if one exists in linear time (how?)
- Given that an Euler circuit exists, how do we *construct* an Euler circuit for G?
- *Hint*: Think deep! We've discussed the answer in depth before...

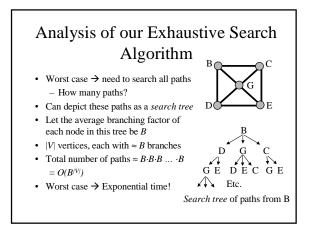






- Sub-problem: Does G contain a Hamiltonian circuit?
 No known easy algorithm for checking this...
- One solution: Search through *all paths* to find one that visits each vertex exactly once

 Can use your favorite graph search algorithm (DFS!) to find
- various paths
- This is an exhaustive search ("brute force") algorithm
- Worst case \rightarrow need to search all paths
 - How many paths??



			1	1
Ν	log N	N log N	N^2	2 ^N
1	0	0	1	2
2	1	2	4	4
4	2	8	16	16
10	3	30	100	1024
100	7	700	10,000	1,000,000,000,000 0,00,000,000,000 000,000
1000	10	10,000	1,000,000	Fo'gettaboutit!
1,000,000	20	20,000,000	1,000,000,000,000	ditto

Review: Polynomial versus Exponential Time

- Most of our algorithms so far have been *O*(*log N*), *O*(*N*), *O*(*N log N*) or *O*(*N*²) running time for inputs of size *N*
 - These are all polynomial time algorithms
 - Their running time is $O(N^k)$ for some k > 0
- Exponential time B^N is asymptotically *worse than any* polynomial function N^k for any k
 - For any *k*, N^k is $\Omega(B^N)$ for any constant B > 1

The Complexity Class P

- The set P is defined as the set of all problems that can be solved in *polynomial worse case time*
 - Also known as the *polynomial time* complexity class
 - All *problems* that have some *algorithm* whose running time is $O(N^k)$ for some k
- Examples of problems in P: tree search, sorting, shortest path, Euler circuit, *etc*.

The Complexity Class NP

- *Definition*: NP is the set of all problems for which a given *candidate solution* can be *tested* in polynomial time
- Example of a problem in NP: – Hamiltonian circuit problem: *Why is it in NP?*

The Complexity Class NP

- *Definition*: NP is the set of all problems for which a given *candidate solution* can be *tested* in polynomial time
- Example of a problem in NP:
 - Hamiltonian circuit problem: Why is it in NP?
 Given a candidate path, can test in linear time if it is a Hamiltonian circuit – just check if all vertices are visited exactly once in the candidate path (except start/finish vertex)

Why NP?

- NP stands for Nondeterministic Polynomial time

 Why "nondeterministic"? Corresponds to algorithms that can
 - search all possible solutions in parallel and pick the correct one \rightarrow each solution can be checked in polynomial time
 - Nondeterministic algorithms don't exist purely theoretical idea invented to understand how hard a problem could be
- Examples of problems in NP:
 - Hamiltonian circuit: Given a candidate path, can test in linear time if it is a Hamiltonian circuit
 - Sorting: Can test in linear time if a candidate ordering is sorted
 - Are any other problems in P also in NP?

More Revelations About NP

- Are any other problems in P also in NP?
 - YES! All problems in P are also in NP
 - Notation: $P \subseteq NP$
 - If you can solve a problem in polynomial time, can definitely verify a solution in polynomial time
- Question: Are all problems in NP also in P?
 - Is NP \subseteq P?

Your Chance to Win a Turing Award: P = NP?

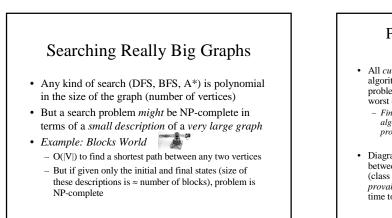
- Nobody knows whether $NP \subseteq P$
- Proving or disproving this will bring you instant fame!

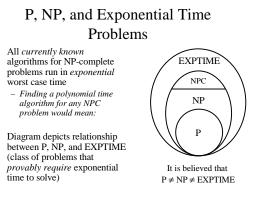
(1912-1954)

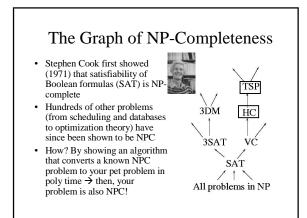
- It is generally believed that P ≠ NP, *i.e.* there are problems in NP that are not in P
 - But no one has been able to show even one such problem!
 - Practically all of modern complexity theory is premised on the assumption that P ≠ NP
- A very large number of useful problems are in NP

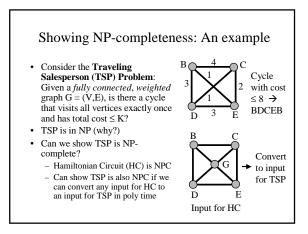
NP-Complete Problems

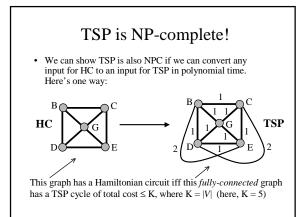
- The "hardest" problems in NP are called *NP-complete* problems (*NPC*)
 - Why "hardest"? A problem X is NP-complete iff:
 - 1. X is in NP and
 - 2. Any problem Y in NP can be converted to an instance of X in polynomial time, such that solving X also provides a solution for Y
 - In other words: Can use algorithm for X as a *subroutine* to solve Y
- Thus, if you find a poly time algorithm for just one NPC problem, all problems in NP can be solved in poly time
 - Example: The Hamiltonian circuit problem can be shown to be NPcomplete (not so easy to prove!)











Coping with NP-Completeness

- Settle for algorithms that are fast on average: Worst case still takes exponential time, but doesn't occur very often. But <u>some</u> NP-Complete problems are also average-time NP-Complete!
- Settle for fast algorithms that give near-optimal solutions: In TSP, may not give the cheapest tour, but maybe good enough. But finding even approximate solutions to <u>some</u> NP-Complete problems is NP-Complete!
- Just get the exponent as low as possible! Much work on exponential algorithms for Boolean satisfiability: in practice can usually solve problem with 1,000+ variables
 - Hot Application: Microprocessor Design Verification

Calendar

- Coming Up Specialized Data Structures
 - Search Trees for Spatial Data (Class notes)
 - Binomial Queues (Ch 6.8)
 - Randomized Data Structures (Ch 10.4.2, 12.5)
- Huffman Codes (10.1.2)
 Friday, March 8th Practice homework
 - Not to be turned in a solution set will be handed out on the last day of class
 - Doing this assignment will be a very good way to prepare for the midterm!
- Homework #7 (Mazes) due Wednesday, March 13th
- NO late assignments accepted after Friday, March 15th we mean it!
 Friday, March 15th Last day of class party demos celebration
- Monday, March 18th, 2:30 4:20 pm Final Exam