CSE 326: Data Structures
Lecture #16
Graphs|: DFS & BFS

Henry Kautz
Winter Quarter 2002

Midterm

Mean: 77 midterm

Std. Dev: 11
L H N

High score: 94

Outline

Graphs (TO DO: READ WEISS CH 9)
Graph Data Structures

Graph Properties
Topological Sort

Graph Traversals

— Depth First Search

— Breadth First Search

— Iterative Deepening Depth First
Shortest Path Problem

— Dijkstra’s Algorithm

Graph ADT

Graphs are aformalism for representing
relationships between objects
— agraph Gis represented as Han

G=(V, B jLuke

+ V isaset of vertices (Q)
- Eisaset of edges Leia

V = {Han, Leia, Luke}

— operations include; E= (gl;;‘;e’ L';f'a;’)’

« iterating over vertices (Lei é, Han)5

« iterating over edges

« iterating over vertices adjacent to a specific vertex

« asking whether an edge exists connected two vertices

What Graph is THIS?

ReferralWeb
(co-authorship in scientific papers)

Graph Representation 1.
Adjacency Matrix

A|V| x |V| arayinwhichaneement(u, v)
istrueif and only if thereis an edgefromu tov

Han Luke Leia
Han
Han Luke
- Luke

Leia
Runtime:
iterate over vertices
iterate ever edges
iterate edges adj. to vertex
edge exists?

Leia

Space requirements:

Graph Representation 2:
Adjacency List

A | V| -ary list (array) in which each entry storesa
list (linked list) of all adjacent vertices

Han
Han jLuke
(Q) Luke

Directed vs. Undirected Graphs

e In Maphs, edges have a specific direction:
Han

OQO J Luke

« Inundirected graphs, they don't (edges are two-way):
Han Luke

Leia
¢ Verticesu andv areadjacent if (u, v) O E

) Leia
Runtime:) Leia
iterate over vertices
iterate ever edges
iterate edges adj. to vertex space requirements:
edge exists?
Graph Density

A sparse graph has O(|V|) edges

A dense graph has ©(|V ?) edges

Anything in between is either sparsish or densy depending on the context.

Weighted Graphs

Each edge has an associated weight or cost.

Clinton 20
Mukilteo
Kingston O-&_O Edmonds

Bainbridge 35 Seattle

60

Bremerton
There may be more
information in the graph as well.

Paths and Cycles
A pathisalist of vertices{v,, v,, .. v,} such
that (v;, v;,,) O Efordl0 <i < n.
A cycleisapath that begins and ends at the same
node.

Seattle

‘ Chicago
.

San Francisco

Dallas
p = {Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle}

Path Length and Cost

Path length: the number of edgesin the path
Path cost: the sum of the costs of each edge

Chicago

Connectivity

Undirected graphs are connected if there is a path between
any two vertices

Directed graphs are strongly connected if there is a path from
any one vertex to any other

Directed graphs are weakly connected if there is a path

between any two vertices, ignoring direction :

A complete graph has an edge between every pair of vertices
AR

<

San Francisco
Dallas
length(p) = 5 cost(p) = 11.5
Trees as Graphs

« Every treeisagraph with
some restrictions:
— thetree is directed
— there are no cycles (directed
or undirected)
— thereis adirected path from
the root to every node

Directed Acyclic Graphs (DAGS)

DAGsaredirected
graphs with no
cycles.

mai n()

mul t ()
if program call
graphisa DAG,
then all
procedure calls) cad()
can bein-lined access()

add()

Trees 0 DAGs O Graphs

Application of DAGs:
Representing Partial Orders

reserve
heck i flight
arport,

pack
@ bms
i locate
l‘aXI to gae
airport,

Topologica Sort

Givenagraph, G = (V, E), output al the vertices
in Vv such that no vertex is output before any other
vertex with an edgeto it.

Topo-Sort Take One

Label each vertex’sin-degree (# of inbound edges)
While there are vertices remaining
Pick avertex with in-degree of zero and output it
Reduce the in-degree of all vertices adjacent to it
Removeit from thelist of vertices

runtime:

Topo-Sort Take Two

Label each vertex’sin-degree

Initialize a queue (or stack) to contain all in-degree zero
vertices

Whilethere are vertices remaining in the queue
Remove a vertex v with in-degree of zero and output it
Reduce the in-degree of all vertices adjacent to v
Put any of these with new in-degree zero on the queue

runtime:

Recall: Tree Traversals

abfgkcdhilje

Depth-First Search

¢ Both Pre-Order and Post-Order traversalsare
examples of depth-first search
— nodes are visited deeply on the left-most branches
before any nodes are visited on the right-most branches
« vidting the right branches deeply before the left would still be
depth-first! Crucial idea is* go deep first!”
« In DFSthe nodes “being worked on” are kept on a
stack (where?)

* Recursion isacluethat DFS may be lurking...

Level-Order Tree Traversal

« Consider task of traversing tree level by level from top to
bottom (alphabetic order)
¢ Isthisalso DFS?

Breadth-First Search

* No! Level-order traversal is an example of Breadth-First
Search
* BFScharacteristics
— Nodes being worked on maintained in a FIFO Queue, not a stack

— lterative style procedures often easier to design than recursive
procedures

Put root in a Queue

Repeat until Queue is empty:
Dequeue a node
Process it
Add it's children to queue

QUEUE

a
bcde e

cdefg

def

efeggij Q @ @ e
fghij

ohij D
w0 O

ijk

jkl

kil G

|

Graph Traversals

» Depth first search and breadth first search also work for
arbitrary (directed or undirected) graphs

— Must mark visited vertices so you do not go into an infinite

loop!

Either can be used to determine connectivity:

— Isthere a path between two given vertices?

— Isthe graph (weskly) connected?

Important difference: Breadth-first search always finds
ashortest path from the start vertex to any other (for
unweighted graphs)

— Depth first search may not!

Demos

DFS

BFS

Single Source, Shortest Path for
Weighted Graphs

Givenagraph G = (V, E) with edge costsc(e),
and avertexs O V, find the shortest (lowest cost)
path from sto every vertex in V

¢ Graph may bedirected or undirected
« Graph may or may not contain cycles
* Weights may be all positive or not

* What isthe problem if graph contains cycles
whose total cost is negative?

The Trouble with
Negative Weighted Cycles

Edsger Wybe Dijkstra

Legendary figure in computer science;
now aprofessor at University of Texas.

Supports teaching introductory computer courses
without computers (pencil and paper programming)

Also famout for refusing to read e-mail; his staff has
to print out messages and put them in his mailbox.

Dijkstra’s Algorithm for
Single Source Shortest Path

« Classic algorithm for solving shortest path in
weighted graphs (with only positive edge weights)
» Similar to breadth-first search, but uses a priority
queueinstead of a FIFO queue:
— Always select (expand) the vertex that has a lowest-cost
path to the start vertex
— akind of “greedy” algorithm
 Correctly handles the case where the |owest-cost
(shortest) path to a vertex is not the one with
fewest edges

Pseudocode for Dijkstra

Initialize the cost of each vertex to c
cost[s] =0;
heap.insert(s);
While (! heap.empty())
n = heap.deleteMin()
For (each vertex awhich is adjacent to n along edge €)
if (cost[n] + edge_cost[€] < cost[a]) then
cost [a] = cost[n] + edge_cost[€]
previous_on_path_to[a] = n;
if (aisin the heap) then heap.decreaseKey(a)
else heap.insert(a)

Important Features

* Onceavertex isremoved from the head, the cost
of the shortest path to that nodeis known

* Whileavertex is still in the heap, another shorter
path to it might still be found

» The shortest path itself from sto any node acan
be found by following the pointers stored in
previous_on_path_to[d]

Dijkstra s Algorithm in Action

rtex known cost

Demo

Dijkstra’s

Data Structures
for Dijkstra’ s Algorithm

| V| times:
Select the unknown node with the lowest cost

findMin/deleteMin

| El times: O(log V)
a'scost = min(a’sold cost, ...)

R Olog V)

runtime: O(|E| log [V])

Fibonacci Heaps

A complex version of heaps - Weiss 11.4
Used more in theory than in practice
Amortized O(1) time bound for decreaseKey
O(log n) time for deleteMin

Dijkstra’suses| V| deleteMinsand | E| decreaseKeys

runtime with Fibonacci heaps: O(|E| + |V|log [V])

for dense graphs, asymptotically better than O(|E| log [V|)

