
1

1

CSE 326: Data Structures
Sorting It All Out

Henry Kautz

Winter Quarter 2002
2

Calendar
• Today: Finish Sorting

– Read Weiss Ch 7 (skip 7.8)
• Friday, Feb. 15th: Disjoint Sets & Union Find

– Read Weiss Ch 8
– Some written homework problems to be due Wednesday, Feb. 20th

• Monday, Feb. 18th: President’s Day, no class
• Wednesday, Feb. 20th: Graph Algorithms

– Weiss Ch 9 + additional material from lecture notes
– Several lectures

• Monday, Feb 25th: Word-counting project due
• Various specialized data structures & algorithms

– Mergeable heaps, quad-trees, Huffman codes, …
• Friday, March 8th: final written homework due
• Friday, March 15th: Last day of class

– Final programming project – building and solving mazes – due

3

Sorting HUGE Data Sets
• US Telephone Directory:

– 300,000,000 records
• 64-bytes per record

– Name: 32 characters
– Address: 54 characters
– Telephone number: 10 characters

– About 2 gigabytes of data
– Sort this on a machine with 128 MB RAM…

• Other examples?

4

MergeSort Good for Something!

• Basis for most external sorting routines

• Can sort any number of records using a tiny
amount of main memory
– in extreme case, only need to keep 2 records in

memory at any one time!

5

External MergeSort
• Split input into two “ tapes” (or areas of disk)
• Merge tapes so that each group of 2 records is

sorted
• Split again
• Merge tapes so that each group of 4 records is

sorted
• Repeat until data entirely sorted

log N passes

6

Better External MergeSort

• Suppose main memory can hold M records.

• Initially read in groups of M records and
sort them (e.g. with QuickSort).

• Number of passes reduced to log(N/M)

2

7

Sorting by Comparison: Summary
• Sorting algorithms that only compare adjacent

elements are Θ(N2) worst case – but may be Θ(N)
best case

• HeapSort and MergeSort - Θ(N log N) both best
and worst case

• QuickSort Θ(N2) worst case but Θ(N log N) best
and average case

• Any comparison-based sorting algorithm is
Ω(N log N) worst case

• External sorting: MergeSort with Θ(log N/M)
passes

but not quite the end of the story…
8

BucketSort

• If all keys are 1…K
• Have array of K buckets (linked lists)
• Put keys into correct bucket of array

– linear time!

• BucketSort is a stable sorting algorithm:
– Items in input with the same key end up in the

same order as when they began

• Impractical for large K…

9

RadixSort
• Radix = “The base of a

number system”
(Webster’s dictionary)
– alternate terminology: radix is

number of bits needed to represent
0 to base-1; can say “ base 8” or
“ radix 3”

• Used in 1890 U.S.
census by Hollerith

• Idea: BucketSort on
each digit, bottom up.

10

The Magic of RadixSort

• Input list:
126, 328, 636, 341, 416, 131, 328

• BucketSort on lower digit:
341, 131, 126, 636, 416, 328, 328

• BucketSort result on next-higher digit:
416, 126, 328, 328, 131, 636, 341

• BucketSort that result on highest digit:
126, 131, 328, 328, 341, 416, 636

11

Inductive Proof that RadixSort Works

• Keys: K-digit numbers, base B
– (that wasn’ t hard!)

• Claim: after i th BucketSort, least significant i
digits are sorted.
– Base case: i=0. 0 digits are sorted.
– Inductive step: Assume for i, prove for i+1.

Consider two numbers: X, Y. Say X i is i th digit of X:
• X i+1 < Y i+1 then i+1th BucketSort will put them in order
• X i+1 > Y i+1 , same thing
• X i+1 = Y i+1 , order depends on last i digits. Induction

hypothesis says already sorted for these digits because
BucketSort is stable

12

Running time of Radixsort

• N items, K digit keys in base B

• How many passes?

• How much work per pass?

• Total time?

3

13

Running time of Radixsort

• N items, K digit keys in base B

• How many passes? K

• How much work per pass? N + B
– just in case B>N, need to account for time to empty out

buckets between passes

• Total time? O(K(N+B))

14

RadixSorting Strings example

spalfString 4

stnaString 3

pazString 2

yppizString 1

1st

pass
2nd

pass
3rd

pass
4th

pass
5th

pass

NULLs are
just like fake
characters

15

Evaluating Sorting Algorithms

• What factors other than asymptotic
complexity could affect performance?

• Suppose two algorithms perform exactly the
same number of instructions. Could one be
better than the other?

16

Example Memory Hierarchy Statistics

8 GB500,000Hard Drive

256 MB35RAM

512 KB8L2 cache

32 KB0L1 (on chip)
cache

SizeExtra CPU cycles
used to access

Name

17

The Memory Hierarchy Exploits
Locality of Reference

• Idea: small amount of fast memory

• Keep frequently used data in the fast
memory

• LRU replacement policy
– Keep recently used data in cache

– To free space, remove Least Recently Used
data

18

So what?

• Optimizing use of cache can make
programs way faster

• One TA made RadixSort 2x faster,
rewriting to use cache better!

• Not just for sorting

4

19

Cache Details (simplified)
Main Memory

Cache

Cache line
size (4 adjacent
memory cells)

20

Traversing an Array

• One miss for every 4 accesses in a traversal

21

Iterative MergeSort

Cache Size cache misses

cache hits
22

Iterative MergeSort – cont’d

Cache Size no temporal
locality!

23

“Tiled” MergeSort – better

Cache Size 24

“Tiled” MergeSort – cont’d

Cache Size

5

25

QuickSort

• Initial partition causes a lot of cache misses
• As subproblems become smaller, they fit

into cache
• Good cache performance

26

Radix Sort – Very Naughty

• On each BucketSort
– Sweep through input list – cache misses along

the way (bad!)

– Append to output list – indexed by pseudo-
random digit (ouch!)

27

Instruction Count

0

50

100

150

200

250

300

350

400

450

500

10000 100000 1e+06

in
st

ru
ct

io
ns

 p
er

 k
ey

set size in keys

memory-tuned heapsort
tiled mergesort

memory-tuned quicksort
radix sort

28

Cache Misses

0

1

2

3

4

5

6

10000 100000 1e+06

ca
ch

e
m

is
se

s
pe

r
ke

y

set size in keys

memory-tuned heapsort
tiled mergesort

memory-tuned quicksort
radix sort

29

0

200

400

600

800

1000

1200

1400

10000 100000 1e+06

tim
e

(c
yc

le
s

pe
r

ke
y)

set size in keys

memory-tuned heapsort
tiled mergesort

memory-tuned quicksort
radix sort

Sorting Execution Time

30

Conclusions

• Speed of cache, RAM, and external memory has a
huge impact on sorting (and other algorithms as
well)

• Algorithms with same asymptotic complexity may
be best for different kinds of memory

• Tuning algorithm to improve cache performance
can offer large improvements (iterative vs. tiled
mergesort)

