CSE 326: Data Structures
Sorting It All Out

Henry Kautz
Winter Quarter 2002

Caendar

* Today: Finish Sorting

— Read WeissCh 7 (skip 7.8)

« Friday, Feb. 15" Disjoint Sets& Union Find

— Read WeissCh 8
— Some written homework problemsto be due Wednesday, Feb. 20

« Monday, Feb. 18" President’s Day, no class
* Wednesday, Feb. 20t Graph Algorithms

— WeissCh 9 + additional material from |ecture notes
— Severd lectures

« Monday, Feb 25t Word-counting project due
« Various specidized data structures & agorithms

— Mergeable hegps, quad-trees, Huffman codes, ...

 Friday, March 8™ final written homework due
e Friday, March 15" Last day of class

— Fina programming project — building and solving mazes — due

Sorting HUGE Data Sets

» USTelephone Directory:
— 300,000,000 records

« 64-bytes per record
— Name: 32 characters
— Address: 54 characters
— Telephone number: 10 characters

— About 2 gigabytes of data
— Sort this on a machine with 128 MB RAM...

¢ Other examples?

MergeSort Good for Something!

» Basisfor most external sorting routines
 Can sort any number of records using atiny
amount of main memory

—in extreme case, only need to keep 2 recordsin
memory at any onetimel c

External MergeSort

Split input into two “tapes’ (or areas of disk)
Merge tapes so that each group of 2 recordsis
sorted

Split again

Merge tapes so that each group of 4 recordsis
sorted

Repeat until data entirely sorted

O m—g =
0

5

Better External MergeSort

 Suppose main memory can hold M records.

* Initialy read in groups of M records and
sort them (e.g. with QuickSort).

» Number of passes reduced to log(N/M)

Sorting by Comparison: Summary

« Sorting algorithms that only compare adjacent
elements are ©(N2) worst case — but may be ©(N)
best case

» HeapSort and MergeSort - ©(N log N) both best
and worst case

» QuickSort ©(N?) worst case but ©(N log N) best
and average case

* Any comparison-based sorting algorithm is
Q(N log N) worst case

» External sorting: MergeSort with ©(log N/M)
passes

but not quite the end of the story...

BucketSort

o If dl keysare 1...K
» Have array of K buckets (linked lists)
* Put keysinto correct bucket of array
— linear time!
* BucketSort is a stable sorting algorithm:

— Itemsin input with the same key end up in the
same order as when they began

 Impractica for largeK...

RadixSort

e Radix =“Thebase of a)
number system” ‘
(Webster’ s dictionary)

— alternate terminology: radix is
number of bits needed to represent Q i
0tobase-1; can say “ base 8" or Rl £
“radix 3" o [~ 17

* Usedin 1890 U.S.
census by Hollerith 3

-
4

-
EE

* ldea: BucketSort on
each digit, bottom up.

The Magic of RadixSort

* Input list:
126, 328, 636, 341, 416, 131, 328

* BucketSort on lower digit:
341, 131, 126, 636, 416, 328, 328

* BucketSort result on next-higher digit:
416, 126, 328, 328, 131, 636, 341

* BucketSort that result on highest digit:
126, 131, 328, 328, 341, 416, 636

Inductive Proof that RadixSort Works

« Keys: K-digit numbers, base B
— (that wasn't hard!)

o Claim: after it BucketSort, least significant i

digits are sorted.

— Base case: i=0. 0 digits are sorted.

— Inductive step: Assume for i, prove for i+1.
Consider two numbers: X, Y. Say X; isith digit of X:
* Xi;1< Y, theni+1% BucketSort will put themin order
* Xi;1> Y, , samething
* Xis1= Yi,1 , order depends on last i digits. Induction

hypothesis says aready sorted for these digits because
BucketSort is stable

Running time of Radixsort

» Nitems, K digit keysin base B
¢ How many passes?
» How much work per pass?

» Tota time?

Running time of Radixsort

N items, K digit keysin base B
How many passes? K
How much work per pass? N+B

— just in case B>N, need to account for time to empty out
buckets between passes

Total time? O(K(N+B))

RadixSorting Strings example

5th 4th 3rd 2nd 1t
pass | pass |pass |pass | pass
Stringl| Z i P ply
Strlng 2 Z a p NULLsare
. just like fake
String3| a | n t S < | characters
String4| f | a p|s

Evaluating Sorting Algorithms

What factors other than asymptotic
complexity could affect performance?

Suppose two algorithms perform exactly the
same number of instructions. Could one be
better than the other?

Example Memory Hierarchy Statistics

The Memory Hierarchy Exploits
Locality of Reference

Idea: small amount of fast memory
Keep frequently used datain the fast
memory

LRU replacement policy

— Keep recently used datain cache

— To free space, remove Least Recently Used
data

Name Extra CPU cycles | Size
used to access
L1 (onchip) |0 32KB
cache
L2 cache 8 512KB
RAM 35 256 MB
Hard Drive {500,000 8GB
16
So what?

» Optimizing use of cache can make
programs way faster

* One TA made RadixSort 2x faster,
rewriting to use cache better!

* Not just for sorting

Cache Details (ssmplified)

Main Memory

Cache -
-

-
-
-

Cacheline ~
size (4 adjacent SN
memory cells) S

Traversing an Array

E[[[I_D:[D

0 e e
T

* One miss for every 4 accesses in a traversal

[|cahesize Mlcachemisses

D cachehits

Iterative MergeSort — cont’d

B [[]

[B | [[

| I

I |

[Jcahesse rotampord
locality! ”

“Tiled” MergeSort — better

— T .

“Tiled” MergeSort — cont’d

— T

QuickSort

* Initial partition causes alot of cache misses

* As subproblems become smaller, they fit
into cache

» Good cache performance

25

Radix Sort — Very Naughty

* On each BucketSort
— Sweep through input list — cache misses along
theway (bad!)

— Append to output list — indexed by pseudo-
random digit (ouch!)

I nstruction Count

Cache Misses

memory-tuned heapsort ——

tiled mergesort ——
5+ memory-tuned quicksort —=—
radix sort ——

cache misses per key

10000 100000 1e+06

500 T T
\ memory-tuned heapsort ——
450 \ tiled mergesort ===
memory-tuned quicksort -
400 - \ radix sort ==
fo 350 |
<
g 300 |
£ =0t
S 200}
B
£ 150 F
100 k=
50 L
0
10000 100000 1e+06
set sizeinkeys 27
[memory-tuned heapsort =—
1400 tiled mergesort ===
memory-tuned quicksort =g==
1200 radix sort ==
g 1000
o]
Q
8
e
&
@
£

10000 100000 1et+06
set sizein keys

set sizeinkeys 28
Conclusions

« Speed of cache, RAM, and external memory has a

huge impact on sorting (and other algorithms as

well)

Algorithms with same asymptotic complexity may

be best for different kinds of memory

« Tuning agorithm to improve cache performance
can offer large improvements (iterative vs. tiled
mergesort)

.

