CSE 326: Data Structures
A Sort of Detour

Henry Kautz
Winter Quarter 2002

Sorting by Comparison

Simple: SelectionSort, BubbleSort
Good worst case: MergeSort, HeapSort
Good average case: QuickSort

Can we do better?

A wWwDdPE

Selection Sort Idea

 Arefirst 2 elements sorted? If not, swap.

» Arethefirst 3 elements sorted? If not,
move the 3" element to the left by series of
swaps.

* Arethefirst 4 elements sorted? If not,
move the 4™ element to the left by series of
swaps.

—etc.

Sdlection Sort

procedure SelectionSort (Array[1..N])

For (i=2 to N) {
jo=y
while (] >0 & Array[j] < Array[j-1]){
swap(Array[j], Array[j-1])
o=
}

Suppose Array is initially sorted?
Suppose Array is reverse sorted?

Sdlection Sort

procedure SelectionSort (Array[1..N])

For (i=2to N) {
i =i
while (j >0 & Array[j] < Array[j-1]){
swap(l}“\rfay{i]v Array[j-1])
b
}

Suppose Array isinitially sorted? O(n)
Suppose Array isreverse sorted? O(n?)

Bubble Sort |dea

Slightly rearranged version of selection sort:

* Move smallest elementinrange 1,...,nto
position 1 by a series of swaps

» Move smallest element inrange 2,...,nto
position 2 by a series of swaps

* Move smallest element inrange 3,...,nto
position 3 by a series of swaps
—etc.

Why Selection (or Bubble) Sort
is Slow

* Inversion: apair (i,j) such that i<j but
Array[i] > Array[j]
* Array of size N can have ©(N?) inversions
— average number of inversionsin arandom set
of elementsisN(N-1)/4
* Selection/Bubble Sort only swaps adjacent
elements
—only removes 1 inversion!

HeapSort: sorting with a priority
queue ADT (heap)

Worst Case:
87
2 44 756 Best Case:
13 18 :
801 o7

s 13 18 23 27

Shove everything into a queue, take them out
smallest to largest.

HeapSort: sorting with a priority
gueue ADT (heap)

Worst Case: O(n log n)

87
23 44 756 :
13 18 Best Case: O(n log n)
801 5 v

ggs 13 18 23 27

Shove everything into a queue, take them out
smallest to largest.

Mergesort MergeSort (tabie [1..n])

Split Table in half
Recursively sort each half
Merge two hal ves together

Merge (Ti[1..n],T2[1..n])
i1=1, i2=1
VWi le il<n, i2<n
If Tii1] < T2[i2]
Next is Ti[i1]

N] i 14+

/e
Merging Cars by key El se))
[Aggressiveness of driver]. Next is T2[i2]
Mot aggressive goes first. i 2++

End |f
End Wile

10

MergeSort Running Time

Any difference
T <b best / worse case?
T(n) < 2T(n/2) +cn forn>1
T(n)<2T(n/2)+cn < 2(2(T(n/4)+cn/2)+cn
=4T(n/4) +cn+en < 4(2(T(n/8)+c(n/4))+cn+cn
= 8T(n/8)+cn+cn+cn expand
< 2€T(n/2¥)+ken inductive leap
< nT(1) +cnlog nwherek =log n select value for k

=0(nlogn) simplify

Qe (@)

Pick a“pivot”. Divide into less-than & greater-than pivot.
Sort each side recursively.

12

QuickSort Partition

Pick pivot; .2 '8 [3[5 [9 [6 |

fitoi | PRCRENENENCH|
< >

2 s [5 (5 [0 [6 |
2 goesto 8 3 5 [9 |6 |

A A
< >

QuickSort Partition (cont’d)
Ieésgs/;vea;t)er-than E

Let’s go to the Races!

A A

< >
9 greater-than
Partition done.

Recursively
sort each side.
14
Analyzing QuickSort

* Picking pivot: constant time

* Partitioning: linear time

 Recursion: time for sorting left partition
(say of sizei) + timefor right (size N-i-1)
T =b
T(N) = T() + T(N-i-1) +cN

where i is the number of elements smaller than the pivot

16

QuickSort
Worst case

Pivot is aways smallest element.
T(N) =T(i) + T(N-i-1) + cN
T(N) =T(N-1) +cN
=T(N-2) + ¢(N-1) +cN
=T(N-Kk) +c§(N—i)
—oNy

Dealing with Slow QuickSorts

» Randomly choose pivot

— Good theoretically and practically, but call to
random number generator can be expensive

* Pick pivot cleverly

—“Median-of-3" rule takes Median(first, middle,
last element elements). Also works well.

18

QuickSort
Best Case

Pivot is aways middle element.
T(N) =T(i) + T(N-i-1) + cN
T(N) =2T(N/2-1) +cN
<2T(N/2)+cN
<AT(N/4)+c(2N/2+N)
<8T(N/8)+cN(1+1+1)
<KT(N/k)+cNlog(k) =O(Nlog N)

QuickSort
Average Case

* Assume all size partitions equally likely,
with probability 1/N
T(N)=T(i)+T(N-i-1)+cN
average value of T(i) or T(N-i-1) is (1/ N)ZET()
T(N) :((2/N)Z:::T(j))+cN
=0O(NlogN)

details: Weiss pg 278-279

20

Could We Do Better?*

« For any possible correct Sorting by
Comparison algorithm...

— What is lowest best casetime?
— What is lowest worst case time?

* (no. sorry.)

Best case time

22

Worst casetime

» How many comparisons does it take before
we can be sure of the order?

* Thisisthe minimum # of comparisons that
any algorithm could do.

Decision treeto sort list A,B,C

facts| internal node, with facts known so far

Legend Leaf node, with ordering of A,B,C

c<A__ Edge, with result of one comparison

24

Max depth of the decision tree

¢ How many permutations are there of N numbers?
How many leaves does the tree have?
« What's the shallowest tree with a given number of leaves?

« What istherefore the worst running time (number of
comparisons) by the best possible sorting al gorithm?

Max depth of the decision tree

« How many permutations are there of N numbers?

N!
How many leaves does the tree have?
N!

« What's the shallowest tree with a given number of leaves?

log(N!")

« What istherefore the worst running time (number of

comparisons) by the best possible sorting a gorithm?
log(N!)

26

Stirling’' s approximation

n

nl=+/2/mn n

e
log(n!) = Iog[%(gjn]

=log(v2rm) +Iog[(2]n] =Q(nlogn)

Not enough RAM — External
Sorting

 E.g.: Sort 10 billion numbers with 1 MB of
RAM.
 Databases need to be very good at this

28

MergeSort Good for Something!

* Basisfor most external sorting routines
» Can sort any number of records using atiny
amount of main memory

— in extreme case, only need to keep 2 recordsin
memory at any one time!

External MergeSort

Split input into two tapes

 Each group of 1 recordsis sorted by
definition, so merge groups of 1 to groups
of 2, again split between two tapes

» Merge groups of 2 into groups of 4

 Repeat until data entirely sorted

O mm—g o=
0

30

Better External MergeSort

 Suppose main memory can hold M records.

* Initialy read in groups of M records and
sort them (e.g. with QuickSort).

» Number of passes reduced to log(N/M)

Summary

Sorting a gorithms that only compare adjacent elements are
O(N?) worst case — but may be ©(N) best case

HeapSort and MergeSort - ©(N log N) both best and worst
case

QuickSort ©(N?) worst case but ©(N log N) best and
average case

Any comparison-based sorting algorithm is

Q(N log N) worst case

External sorting: MergeSort with ©(log N/M) passes

32

