CSE 326: Data
Structures
Lecture #12
Hashing |1

Henry Kautz
Winter 2002

Load Factor in Linear Probing

» For any A < 1, linear probing will find an empty slot
» Search cost (for large table sizes)
= successful search:

1 1
5]
= unsuccessful search:
1 1+#
27 [@-ay

» Performance quickly degrades for A > 1/2

Linear Probing — Expected # of Probes

L oad factor failure success
1 111 1.06

2 1.28 1.13

3 152 121

4 1.89 1.33

5 25 1.50

.6 36 1.75

7 6.0 217

.8 13.0 3.0

9 50.5 55

Open Addressing I1: Quadratic
Probing

» Main Idea: Spread out the search for an empty slot —
Increment by i2 instead of i

» h(X) = (Hash(X) +i?) % TableSze
hO(X) = Hash(X) % TableSize
h1(X) = Hash(X) + 1 % TableSize
h2(X) = Hash(X) + 4 % TableSize
h3(X) = Hash(X) + 9 % TableSize

Quadratic Probing Example

insert(14) insert(7) insert(2l) insert(2)
14%7=0 8%7=1 21%7=0 2%7=2

914 914 914 914
1] g g g
2 2 2 2,
3| 3 3 3|
4 4 4Z 42
5 5 5| 5|
6 | 6 | 6 | 6 |

1 1 3 1

probes:

Problem With Quadratic Probing

insert(14) insert(8) insert(21) insert(2) insert(7)
14%7=0 8%7=1 21%7=0 2%7=2 7%7=0

014 014 914 014 914
1 g g g g
2| 2| 2| 2| 2 2 2
3| 3| 3| 3 3|
o O P~ I PR PYY
5| 5| s | 5| s |
6 | 6 | 6 | 6 | 6 |

probes: 1 1 3 1

Load Factor in Quadratic Probing

» Theorem: If TableSizeisprimeand A < %,
quadratic probing will find an empty slot; for greater
A, might not

» With load factors near %2 the expected number of
probesis about 1.5

» Don't get clustering from similar keys (primary
clustering), still get clustering from identical keys
(secondary clustering)

Open Addressing I11: Double Hashing

» ldea: Spread out the search for an empty slot by
using a second hash function
= No primary or secondary clustering
» hi(X) = (Hash,(X) + i - Hash,(X)) mod TableSze
fori=0,1,2, ...
» Good choice of Hash,(X) can guarantee does not
get “stuck” aslongasA <1
= Integer keys:
Hash,(X) = R— (X mod R)
where R isaprime smaller than TableSize

Double Hashing Example

insert(14) insert(8) insert(21) insert(2) insert(7)
14%7=0 8%7=1 21%7=0 2%7=2 %7 =0

5-(21%5)=4 5-(21%5)=4
Tial Jaa] Yua] 14| Y1a
1 1 8 1 8 1 8 1] 8
2 2 2 2, 2,
3| 3| 3| 3| 3
4 4 421 4= 421
5| 5| s | 5] s |
6 | 6 | 6 6 6 |
probes: 1 1 2 1 s

Double Hashing Example

insert(14) insert(8) insert(21) insert(2) insert(7)
14%7=0 8%7=1 21%7=0 2%7=2 %7 =0

5-(21%5)=4 5-(21%5)=4

Tal J1a] Yua] 14| Y1a

1 1 8 1 8 1 8 1] 8

2 2 2 2, 2,

3| 3| 3| 3| 3|

4 4 421 4= 421

5 5 5 5 7

6 | 6 | 6 6 6 |
probes: 1 1 2 1 4

Load Factor in Double Hashing

» For any A < 1, double hashing will find an empty slot (given
appropriate table size and hash,)

» Search cost appears to approach optimal (random hash):
* successful search: 1 1

i n —
A 1-2
= unsuccessful search: 1
1-A
» No primary clustering and no secondary clustering

» Becomes very costly asA nears 1. In practice, slower than
quadratic probing if A < V.

Deletion with Separate Chaining

Why isthis dide blank?

Deletion in Open Addressing

delete(2) find(7)

0 0

1 1 Whereisit?
2 L

7 7

What should we do instead?

Lazy Deletion

delete(2) find(7)
0 0 Indicates deleted value:
1 1 if you find it, probe again
2 #
7 7

But now what is the problem?

The Squished Pigeon
Principle

» Aninsert using open addressing cannot work with a
load factor of 1 or more.
= Quadratic probing can fail if A > %
= Linear probing and double hashing slow if A > %2
= Lazy deletion never frees space
» Separate chaining becomes slow once A > 1
= Eventually becomes alinear search of long chains
» How can we relieve the pressure on the pigeons?

REHASH!

Rehashing Example

Separate chaining
h,(x) = x mod 5 rehashes to h,(x) = x mod 11

0 1 2 3 4
NS
25 37 83
52 98

PR o

10
25 37 83 52 98

Stretchy Stack Amortized
Anaysis

» Consider sequence of n operations

push(3); push(19); push(2); ...
> What isthe max number of stretches? logn
» What isthe total time?

= |et’s say aregular push takestime a, and stretching an array
contain k elements takes time bk.

logn
an+b(l+2+4+8+..+n)=an+h) 2

=an+b(2n-1)

> Amortized time = (an+b(2n-1))/n= O(1)

Rehashing Amortized
Andysis)
» Consider sequence of n operati})lns ffég}%

insert(3); insert(19); insert(2); ...
» What isthe max number of rehashes? logn
» What is the total time?

= |et's say aregular hash takestime a, and rehashing an array
contain k elements takes time bk.

logn
an+b(l+2+4+8+..+n)=an+hy 2

=an+b(2n-1)

> Amortized time = (an+b(2n-1))/n= O(1)

Rehashing without Stretching

» Suppose input isamix of inserts and deletes

= Never more than TableSize/2 active keys

= Rehash when A=1 (half the table must be deletions)
» Worst-case sequence:

= T/2inserts, T/2 deletes, T/2 inserts, Rehash,

T/2 deletes, T/2 inserts, Rehash, ...
» Rehashing at most doubles the amount of work —
still O(1)

Case Study

> Spelling dictionary » Practical notes
= 30,000 words = amost all searches are
= static successful Why?

= words average about 8

) zrrggrary(lsh) preprocessing charactersin length

. = 30,000 words at 8

> Goals bytesiword is 1/4 MB
= fast spell checking = pointers are 4 bytes

= minimal storage

there are many regularities
in the structure of English
words

Solutions

» Solutions
= sorted array + binary search
= separate chaining
= open addressing + linear probing

Storage

» Assume words are strings and entries are pointers
to strings
Array +

Open addressin
binary search Separate chaining P =ng
n pointers
table sze + 2n pointers =
A +2n n/A pointers

Anaysis

» Binary search

= storage: n pointers + words = 360KB

= time: log,n < 15 probes per access, worst case
» Separate chaining

= storage: 2n + n/A pointers + words (A = 1 = 600KB)

= time: 1+ A/2 probes per access on average (A = 1= 1.5)
» Open addressing

= storage: n/A pointers + words (A = 0.5 = 480KB)

= time: g(“(il)] probes per access on average (A = 0.5= 1.5)
2 1-2

Which one should we use?

A Random Hash...

» Universal hashing

= Given aparticular input, pick a hash function parameterized by
some random number

= Useful in proving average case results — instead of randomizing
over inputs, randomize over choice of hash function
» Minimal perfect hash function: one that hashes a given set
of nkeysinto atable of size n with no collisions
= Always exist
= Might have to search large space of parameterized hash functions
to find
= Application: compilers
» One way hash functions
= Used in cryptography
= I!jad (intractable) to invert: given just the hash value, recover the
ey

Coming Up

» Wednesday: Nick leads the class

» Try all the homework problems BEFORE
Thursday, so you can ask questions in section!

» Friday: Midterm

