
1

CSE 326: Data Structures
Lecture #1

Introduction

Henry Kautz

Winter Quarter 2002

Today’s Outline

• Administrative Stuff

• Overview of 326

• Introduction to Abstract Data Types: Lists

• Introduction to Complexity

Course Information

• Instructor: Henry Kautz <kautz@cs.washington.edu>
Office hours: Monday 2:30-3:30 and by appointment

417 Sieg Hall

• TA’s: Nick Diebel <jdeibel@cs.washington.edu>
Hannah Tang <htang@cs.washington.edu>
Office hours TBA

Meet in Sieg 226B

• Text: Data Structures & Algorithm Analysis in C++ , 2nd

edition, by Mark Allen Weiss

• Final: Monday, March 18th; Midterm date TBA

Course Policies
• Weekly assignments – mix of programming and

mathematical analysis
– 10% a day penalty for late assignments
– Learning from each other and discussing the

assignments is great, but plagiarism is not. When in
doubt just check with me or the TA’s.

• Grading
– Homework: 65%
– Exams: 35%
– Class participation: 5%

105%

Course Mechanics

• http://www/education/courses/326/02wi

• Mailing list: cse326@cs.washington.edu
You should get a test mailing by next class; if not, send

email to Nick!

• Course labs are 232 and 329 Sieg Hall
– lab has NT machines w/X servers to access UNIX

• All programming projects graded on UNIX using
g++ compiler

What is this Course About?

Clever ways to organize information in order to
enable efficient computation

– What do we mean by clever?

– What do we mean by efficient?

2

Clever? Efficient?
Lists, Stacks, Queues

Heaps

BST/AVL/Splay Trees

Hash Tables

Graphs

Up Trees

Quad Trees

Sparse Matrix Multiply

Merge

Binary Search

Double Hashing

A* Search

Union/Find

Nearest Neighbor

Data Structures Algorithms

Used Everywhere!

Mastery of this
material separates
you from:

Systems

Theory
Graphics

AI

Applications

Anecdote #1

• N2 “pretty print” routine nearly dooms knowledge-
based product configuration system at AT&T

– Written in Franz Lisp

– 10 MB data = 10 days (100 MIPS) to save to disk!

– Whoever wrote the compiler must have skipped this
course…

Guaranteed Non-Obsolescence

• Much is passing…
– B, DOS, .com’s…

• Won’t our notions of “efficiency” change?
Moore’s Law: computer capacity doubles every 18

months

• Anecdote #2: Drum Computers
– in 1960’s, expertise on laying out data on

drum became obsolete with invention of
magnetic core memory

Asymptotic Complexity

Our notion of efficiency:

How the running time of an algorithm scales with the
size of its input
– several ways to further refine:

• worst case

• average case

• amortized over a series of runs

The Apocalyptic Laptop

Seth Lloyd, SCIENCE, 31 Aug 2000

3

1

100000

1E+10

1E+15

1E+20

1E+25

1E+30

1E+35

1E+40

1E+45

1E+50

1E+55

1E+60

1 10 100 1000

2^N

1.2^N

N 5̂

N 3̂

5N

Big Bang
Ultimate Laptop,

1 year
1 second

1000 MIPS,

since Big Bang

1000 MIPS,

1 day

Specific Goals of the Course

• Become familiar with some of the fundamental data
structures in computer science

• Improve ability to solve problems abstractly
– data structures are the building blocks

• Improve ability to analyze your algorithms
– prove correctness
– gauge (and improve) time complexity

• Become modestly skilled with the UNIX operating
system (you’ ll need this in upcoming courses)

Why Are We All Here?

• My interest: Artificial intelligence
• What are the theoretical limitations of difference algorithms

for logical and probabilistic inference?

• How can a AI system learn to reason more efficiently, by
analyzing it’s past performance?

• How can an AI system augment the reasoning capability of a
person suffering from a cognitive disorder?

• What about computing interests you?

AI Graphics Systems

Theory Hardware Languages/Software

One Preliminary Hurdle

A little mathematics …

Interactive Survey:

n

i=1

(0) ; () (/ 2)

i ?

() versus

CSE 321 comp

 () vers

leted?

Proof of program correc

us

t

 (n)?

n

ess?

?

O n

f a f n f n

n

c

θ
= = +

Ω

�

A Second Hurdle

• Unix
Experience 1975 all over again!
– Still the OS used for most cutting-edge research in

computer science
– Robust, stable, simple
– Not just the OS and compiler, but a set of incredibly

handy tools for running experiments and manipulating
data – csh, awk, gnuplot

• Also grep, perl
• CYGWIN – simulates UNIX under Windows – handy way to

develop code on your (non-Linux) laptop!

A Third Hurdle: Templates
cl ass Set _of _i nt s {

publ i c:

i nser t (i nt x) ;

bool ean i s_member (i nt x) ; … }

t empl at e <cl ass Obj > cl ass Set {

publ i c:

i nser t (Obj x) ;

bool ean i s_member (Obj x) ; … }

Set <i nt > SomeNumber s;

Set <char * > SomeWor ds;

See notes on course web page on using
templates in g++ !

4

Handy Libraries
• From Weiss:

vect or < i nt > MySaf eI nt Ar r ay;

vect or < doubl e > MySaf eFl oat Ar r ay;

st r i ng MySaf eSt r i ng;

• Like arrays and char*, but provide
– Bounds checking

– Memory management

– Okay to use

• STL (Standard Template Library)
– most of CSE 326 in a box

– don’t use; we’ ll be rolling our own!

Interactive Survey, Continued

• C++ ?

• Templates ? Defining new iterators?

• Unix ?

• Linked lists ? Stretchy arrays?

• Recursive vs. iterative computation of Fibonacci numbers?

C++ ≠ Data Structures

One of the all time great books in computer science:

The Art of Computer Programming (1968-1973)
by Donald Knuth

Examples in assembly language (and English)!

American Scientist
says: in top 12 books
of the CENTURY!

Abstract Data Types

Data Types
integer, array,

pointers, …

Abstract Data Type (ADT)
Mathematical description of an
object and the set of operations
on the object

Algorithms
binary search,
quicksort, …

tradeoffs!

List ADT
• List properties

– Ai precedes Ai+1 for 1 ≤ i < n
– Ai succeeds Ai-1 for 1 < i ≤ n
– Size 0 list is defined to be the empty list

• Key operations
– Kth(integer) = item
– Find(item) = position
– Insert(item, position)
– Delete(position)
– Iterate through elements of the lists

• What are some possible data structures?

(A1 A2 … An- 1 An)
l engt h = n

Which is Best?

Iterate

Delete

Insert

Find

Kth()

Sorted
array

ArrayLinked list

5

Why Analysis?

• Proofs of correctness guarantee that our code
actually does what we intended it to do

• Complexity analysis makes our intuitions about
efficiency concrete and precise

Summing an Array Recursively

i nt sum(i nt v [] , i nt n)

{

}

Summing an Array Recursively

i nt sum(i nt v [] , i nt n)

{

i f (n==0) r et ur n 0;

el se r et ur n v[n- 1] +sum(v, n- 1) ;

}

Inductive Proof of Correctness
i nt sum(i nt v[] , i nt n)

{

i f (n==0) r et ur n 0;

el se r et ur n v[n- 1] +sum(v, n- 1) ;

}

Need to prove: sum(v,n) correctly returns sum of 1st n elements
of array v for any n.

Basis Step: Program is correct for n=0; returns 0. ➼

Inductive Hypothesis (n=k): Assume sum(v,k) returns sum of
first k elements of v.

Inductive Step (n=k+1): sum(v,k+1) returns v[k]+sum(v,k),
which is the same of the first k+1 elements of v. ➼

To Do

• Get started on homework # 1
– Log on to Unix servers

– Bring questions to section!

• Read Weiss chapters 1 and 2

