
1

CSE 326: Data Structures
It’s an open-and-closed hash!

Hannah Tang and Brian Tjaden

Summer Quarter 2002

Reminder: Dictionary ADT

• Dictionary operations
– insert

– find

– delete

• Stores values associated with user-specified keys
– values may be any (homogenous) type

– keys may be any (homogenous) comparable type

• Tjaden
– who ever heard of a name

spelled with “tj”

• Hannah
– does she really have an “h”

at the end of her name

• Albert
– what’s his relation to Albert

S. Wong again

insert

find(Tjaden)

• Darth
   - wouldn’t want to
meet him in a dark alley

• Tjaden
    - who ever heard of a 
name spelled with “tj”

Implementations So Far

• Unsorted list O(1) O(n) O(n)

• Sorted list O(n) O(log n)? O(n)

• Trees O(log n) O(log n) O(log n)

insert deletefind

How about O(1) insert/find/delete?

Hash Table Goal

Albert

…

We can do:

a[2] = “Albert”

k-1

3

2

1

0

what’s...

…

We want to do:

a[“Albert”] = “what’s...”

“Han”

“Leah”

“Albert”

“Brian”

“Hannah”

Hash Table Approach

f(x)

Hannah

Brian

Albert

Leah

Han

Hash Table Approach

But… is there a problem? is this a pipe-dream?

f(x)

Hannah

Brian

Albert

Leah

Han



2

Hash Table
Dictionary Data Structure

• Hash function: maps keys
to integers
– result: can quickly find the

right spot for a given entry

f(x)
Hannah

Brian
Albert

Leah
Han

What if we have a sparse unordered table?
Can we efficiently list all entries?

Hash Table Terminology

f(x)

Hannah

Brian

Albert

Leah

Han

hash function

collision

keys

load factor λ = # of entries in table

                         
tableSize

Hash Table Code
First Pass

Value find(Key k) {
  int index = hash(k) % tableSize;
  return Table[tableSize];
}

What should the hash
function be?

What should the table size
be?

How should we resolve
collisions?

A Good Hash Function…

…is easy (fast) to compute (O(1) and practically fast).

…distributes the data evenly (hash(a) % size ≠ hash(b) % size).

…uses the whole hash table (for all 0 ≤ k < size, there’s an i
such that hash(i) % size = k).

Good Hash Function for Integers

• Choose
– tableSize is prime

– hash(n) = n

• Example:
– tableSize = 7

insert(4)

insert(17)

find(12)

insert(9)

delete(17)

3

2

1

0

6

5

4

Good Hash Function for Strings?

• Let s = s1s2s3s4…sn:
– hash(s) = ASCII(s1) + ASCII(s2) + ... + ASCII(sn)

Problems?



3

Making the String Hash
Easy to Compute

• Use Horner’s Rule

int hash(String s) {
  h = 0;
  for (i = s.length() - 1; i >= 0; i--) {
    h = (si + 128*h) % tableSize;
  }
  return h; 
}

How to Design a Hash Function

• Know what your keys are

• Study how your keys are distributed

• Try to include all important information in a key
in the construction of its hash

• Try to make “neighboring” keys hash to very
different places

• Prune the features used to create the hash until it
runs “fast enough” (very application dependent)

Collisions

• Pigeonhole principle says we can’t avoid all collisions
– try to hash without collision m keys into n slots with m > n

– try to put 7 pigeons into 5 holes

• What do we do when two keys hash to the same entry?
– open hashing: put little dictionaries in each entry

– closed hashing: pick a next entry to try

shove extra pigeons in one hole!

3

2

1

0

6

5

4

a d

e b

c

Open Hashing or
Hashing with Chaining

• Put a little dictionary at
each entry
– choose type as

appropriate

– common case is
unordered linked list
(chain)

• Properties
– λ can be greater than 1

– performance degrades
with length of chains

h(a) = h(d)
h(e) = h(b)

Open Hashing Code

Dictionary findBucket(Key k) {

  return table[hash(k)%table.size];

}

Value find(Key k)

{

return findBucket(k).find(k);

}

void delete(Key k)
{
  findBucket(k).delete(k);
}

void insert(Key k, Value v)
{
  findBucket(k).insert(k,v);
}

Load Factor in Open Hashing

• Search cost
– unsuccessful search:

– successful search:

• Desired load factor:



4

Closed Hashing or
Open Addressing

What if we only allow one Key at
each entry?
– two objects that hash to the same

spot can’t both go there

– first one there gets the spot

– next one must go in another spot

• Properties
– λ ≤ 1

– performance degrades with
difficulty of finding right spot

a

c

e
3

2

1

0

6

5

4

h(a) = h(d)
h(e) = h(b)

d

b

Probing

• Probing how to:
– First probe - given a key k, hash to h(k)

– Second probe - if h(k) is occupied, try h(k) + f(1)

– Third probe - if h(k) + f(1) is occupied, try h(k) + f(2)

– And so forth

• Probing properties
– we force f(0) = 0

– the ith probe is to (h(k) + f(i)) mod size

– if i reaches size - 1, the probe has failed

– depending on f(), the probe may fail sooner

– long sequences of probes are costly!

X-FILES

Linear Probing

• Probe sequence is
– h(k) mod size

– h(k) + 1 mod size

– h(k) + 2 mod size

– …

• findEntry using linear probing:

f(i) = i

bool findEntry(Key k, Entry entry) {
  int probePoint = hash(k);
  do {
    entry = table[probePoint];
    probePoint = (probePoint + 1) % size;
  } while (!entry.isEmpty() && entry.getKey() != k);
  return !entry.isEmpty();
}

Linear Probing Example

probes:

47

93

40

103

2

1

0

6

5

4

insert(55)
55%7 = 6

3

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

1

76

3

2

1

0

6

5

4

insert(93)
93%7 = 2

1

93

76

3

2

1

0

6

5

4

insert(40)
40%7 = 5

1

93

40

76

3

2

1

0

6

5

4

insert(47)
47%7 = 5

3

47

93

40

76

103

2

1

0

6

5

4

insert(10)
10%7 = 3

1

55

76

93

40

47

Load Factor in Linear Probing

• For any λ < 1, linear probing will find an empty slot

• Search cost (for large table sizes)
– successful search:

– unsuccessful search:

• Linear probing suffers from primary clustering

• Performance quickly degrades for λ > 1/2

( ) 





−

+ 21

1
1

2

1

λ

( )





−
+

λ1

1
1

2

1

Quadratic Probing

• Probe sequence is
– h(k) mod size

– (h(k) + 1) mod size

– (h(k) + 4) mod size

– (h(k) + 9) mod size

– …

• findEntry using quadratic probing:

f(i) = i2

bool findEntry(Key k, Entry entry) {
  int probePoint = hash(k), numProbes = 0;
  do {
    entry = table[probePoint];
    numProbes++;
    probePoint = (probePoint + 2*numProbes - 1) % size;
  } while (!entry.isEmpty() && entry.getKey() != key);
  return !entry.isEmpty();
}



5

Quadratic Probing Example J

probes:

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

1

76

3

2

1

0

6

5

4

insert(40)
40%7 = 5

1

40 40

76

3

2

1

0

6

5

4

insert(48)
48%7 = 6

2

48 47

40

76

3

2

1

0

6

5

4

insert(5)
5%7 = 5

3

5 5

40

553

2

1

0

6

5

4

insert(55)
55%7 = 6

3

76

47

Quadratic Probing Example L

probes:

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

1

35

93

40

76

3

2

1

0

6

5

4

insert(47)
47%7 = 5

∞

76

3

2

1

0

6

5

4

insert(93)
93%7 = 2

1

93 93

76

3

2

1

0

6

5

4

insert(40)
40%7 = 5

1

40

93

40

76

3

2

1

0

6

5

4

insert(35)
35%7 = 0

1

35

Quadratic Probing Succeeds
(for λ ≤ ½)

• If size is prime and λ ≤ ½, then quadratic probing
will find an empty slot in size/2 probes or fewer.
– show for all 0 ≤ i, j ≤ size/2 and i ≠ j

(h(x) + i2) mod size ≠ (h(x) + j2) mod size

– by contradiction: suppose that for some i ≠ j:
(h(x) + i2) mod size = (h(x) + j2) mod size

i2 mod size = j2 mod size

(i2 - j2) mod size = 0

[(i + j)(i - j)] mod size = 0

– but how can i + j = 0 or i + j = size when

i ≠ j and i,j ≤ size/2?

– same for i - j mod size = 0

Quadratic Probing May Fail
(for λ > ½)

• For any i larger than size/2, there is some j smaller
than i that adds with i to equal size (or a multiple
of size). D’oh!

Load Factor in Quadratic Probing

• For any λ ≤ ½, quadratic probing will find an empty
slot; for greater λ, quadratic probing may find a slot

• Quadratic probing does not suffer from primary
clustering

• Quadratic probing possibly suffers from secondary
clustering

Double HashingDouble Hashing
f(i) = i ⋅ hash2(x)

• Probe sequence is
– h1(k) mod size

– (h1(k) + 1 ⋅ h2(x)) mod size

– (h1(k) + 2 ⋅ h2(x)) mod size

– …

• Code for finding the next linear probe:
bool findEntry(Key k, Entry entry) {
  int probePoint = hash1(k), hashIncr = hash2(k);
  do {
    entry = table[probePoint];
    probePoint = (probePoint + hashIncr) % size;
  } while (!entry.isEmpty() && entry.getKey() != k);
  return !entry.isEmpty();
}



6

A Good Double Hash Function…

…is quick to evaluate.

…differs from the original hash function.

…never evaluates to 0 (mod size).

One good choice is to choose a prime R < size and:

hash2(x) = R - (x mod R)

Double HashingDouble Hashing Example

probes:

93

55

40

103

2

1

0

6

5

4

insert(55)
55%7 = 6

5 - (55%5) = 5

2

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

1

76

3

2

1

0

6

5

4

insert(93)
93%7 = 2

1

93

76

3

2

1

0

6

5

4

insert(40)
40%7 = 5

1

93

40

76

3

2

1

0

6

5

4

insert(47)
47%7 = 5

5 - (47%5) = 3

2

47

93

40

76

103

2

1

0

6

5

4

insert(10)
10%7 = 3

1

47

76

93

40

47

Load Factor in Double Hashing
• For any λ < 1, double hashing will find an empty

slot (given appropriate table size and hash2)

• Search cost appears to approach optimal (random
hash):
– successful search:

– unsuccessful search:

• No primary clustering and no secondary clustering

• One extra hash calculation

λ−1

1

λλ −1

1
ln

1

0

1

2

73

2

1

0

6

5

4

delete(2)

0

1

73

2

1

0

6

5

4

    find(7)

Where is it?!

Deletion in Closed Hashing

• Must use lazy deletion!

• On insertion, treat a deleted item as an empty slot

0

1

2
3

2

1

0

6

5

4

insert(7)

The Squished Pigeon Principle

• An insert using closed hashing cannot work with a
load factor of 1 or more.

• An insert using closed hashing with quadratic probing
may not work with a load factor of ½ or more.

• Whether you use open or closed hashing, large load
factors lead to poor performance!

• How can we relieve the pressure on the pigeons?

Rehashing
• When the load factor gets “too large” (over a constant

threshold on λ), rehash all the elements into a new,
larger table:
– takes O(n), but amortized O(1) as long as we (just about)

double table size on the resize

– spreads keys back out, may drastically improve performance

– gives us a chance to retune parameterized hash functions

– avoids failure for closed hashing techniques

– allows arbitrarily large tables starting from a small table

– clears out lazily deleted items



7

It’s all about tradeoffs!


