

Get out some paper:
Charecteristics of some Dictionary ADT Implementations

- (unbalanced) Binary Search Trees
- AVL Trees
- Splay Trees
- Other?

We Want To Minimize Disk Accesses!

Problems with M-ary Search Trees

- Maximum branching factor of \boldsymbol{M}
- Complete tree has depth $=\log _{M} \mathbf{N}$
- Each internal node in a
 complete tree has
м - 1 keys
runtime:

M-ary Search Tree

B-Trees

- B-Trees are specialized M-ary search trees
- Each node has many keys
- subtree between two keys x and y
 $x \leq v<y$
- binary search within a node to find correct subtree
- Each node takes one full \{page, block, line $\}$ of memory

B-Tree Properties ${ }^{\ddagger}$

- Properties
- maximum branching factor of \boldsymbol{M}
- the root has between 2 and \boldsymbol{M} children or at most \boldsymbol{L} keys
- other internal nodes have between $\lceil M / 2\rceil$ and M children
- internal nodes contain only search keys (no data)
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between $\lceil L / 2\rceil$ and L keys
- all leaves are at the same depth

B-Tree Properties

B-Tree Properties

- Properties
- maximum branching factor of M
- the root has between 2 and M children or at most L keys
- other internal nodes have between $\lceil M / 2\rceil$ and M children
- internal nodes contain only search keys (no data)
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between $\lceil\boldsymbol{L} / 2\rceil$ and L keys
- all leaves are at the same depth
- maximum branching factor of M
- the root has between 2 and M children or at most L keys
- other internal nodes have between $\lceil\boldsymbol{M} / \mathbf{2}\rceil$ and \boldsymbol{M} children
- internal nodes contain only search keys (no values)
- All values are stored at the leaves
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between $\lceil L / 2\rceil$ and L keys
- all leaves are at the same depth

B-Tree Properties

- Properties
- maximum branching factor of M
- the root has between 2 and M children or at most L keys
- other internal nodes have between $\lceil M / 2\rceil$ and M children
- internal nodes contain only search keys (no data)
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between $\lceil L / 2\rceil$ and L keys
- all leaves are at the same depth
- Result
- tree is $\Theta\left(\mathbf{l o g}_{M} \mathbf{n}\right)$ deep
- all operations run in $\Theta\left(\log _{M} n\right)$ time
- operations pull in about $M / 2$ or $L / 2$ items at a time

B-Tree Nodes

- Internal node

- Leaf

Insertion in Boring Text

- Insert the key in its leaf - If an internal node ends up
- If the leaf ends up with $L+1$ items, overflow!
- Split the leaf into two nodes:
- original with $\lceil(L+1) / 2\rceil$ items
- new one with $\lfloor(L+1) / 2\rfloor$ items
- Add the new child to the parent
- If the parent ends up with $M+1$ items, overflow! with $M+1$ items, overflow!
- Split the node into two nodes: - original with $\lceil(M+1) / 2\rceil$ items - new one with $\lfloor(M+1) / 2\rfloor$ items
- Add the new child to the parent
- If the parent ends up with $\boldsymbol{M + 1}$ items, overflow!

Deletion in Two
 Boring Slides of Text

- Remove the key from its leaf
- If the leaf ends up with fewer
thanf $\mathrm{z} / 27$ items, underflow!

update the parent
- If borrowing won't work, delete node and divide keys between

Why will dumping keys always work if borrowing neighbors doesn't?

- If the parent ends up with fewer than $\lceil\boldsymbol{M} / \mathbf{2}\rceil$ items, underflow!

Deletion Slide Two

- If a node ends up with fewer than $\lceil\mathbf{M} / \mathbf{2}\rceil$ items, underflow!
- Adopt subtreesfrom a neighbor; update the parent
- If borrowing won't work, delete node and divide subtrees between neighbors
- If the parent ends up with fewer
thanf $M+27$ items, underflow!
If the root ends up with only \quad This reduces the height of one child, make the child the
new root of the tree

B-trees vs AVL trees

We have a database* with 100 million items $(100,000,000)$:

- Depth of AVL Tree
- Depth of B+ Tree with B $=128, \mathrm{~L}=64$

Thinking about B-Trees

- B-Tree insertion can cause (expensive) splitting and propagation
- B-Tree deletion can cause (cheap) borrowing or (expensive) deletion and propagation
- Propagation is rare if \boldsymbol{M} and \boldsymbol{L} are large (Why?)
- Repeated insertions and deletion can cause thrashing
- If $\boldsymbol{M}=\boldsymbol{L}=128$, then a B-Tree of height 4 will store at least 30,000,000 items

