

Get out some paper: Charecteristics of some Dictionary ADT Implementations

- (unbalanced) Binary Search Trees
- AVL Trees
- · Splay Trees
- Other?

M-ary Search Tree

- Maximum branching factor of *M*
- Complete tree has depth = log_MN
- Each internal node in a complete tree has

m - 1 keys
runtime:

Problems with M-ary Search Trees

B-Trees

- B-Trees are specialized *M*-ary search trees
- · Each node has many keys
 - subtree between two keys x and y contains leaves with values v such that $x \le v < y$
 - binary search within a node to find correct subtree
- Each node takes one full {page, block, line} of memory

B-Tree Properties[‡]

• Properties

- maximum branching factor of M
- the root has between 2 and **M** children or at most **L** keys
- other internal nodes have between $\lceil M/2 \rceil$ and M children
- internal nodes contain only search keys (no data)
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between $\lceil L/2 \rceil$ and L keys
- all leaves are at the same depth

‡These are technically B+-Trees

B-Tree Properties

· Properties

- maximum branching factor of M
- the root has between 2 and M children or at most L keys
- other internal nodes have between ém/2ù and M children
- internal nodes contain only search keys (no values)
- All values are stored at the leaves
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between $\lfloor L/2 \rfloor$ and L keys
- all leaves are at the same depth

B-Tree Properties

· Properties

- maximum branching factor of M
- the root has between 2 and M children or at most L keys
- other internal nodes have between $\lceil M/2 \rceil$ and M children
- internal nodes contain only search keys (no data)
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between $\textbf{\&}\textit{L}/2\textbf{\^{u}}$ and $\textbf{\textit{L}}$ keys
- $\,-\,$ all leaves are at the same depth

B-Tree Properties

· Properties

- maximum branching factor of M
- the root has between 2 and M children or at most L keys
- other internal nodes have between $\lceil M/2 \rceil$ and M children
- internal nodes contain only search keys (no data)
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between $\lceil L/2 \rceil$ and L keys
- all leaves are at the same depth

• Result

- tree is $\mathbf{Q}(\log_{\mathbf{M}} \mathbf{n})$ deep
- all operations run in **Q(log_M n)** time
- operations pull in about M/2 or L/2 items at a time

Insertion in Boring Text • Insert the key in its leaf • If an internal node ends up with M+1 items, overflow! • If the leaf ends up with L+1 - Split the node into two nodes: items, overflow! original with é(M+1)/2ù items - Split the leaf into two nodes: • new one with **ë(M+1)/2û** items original with é(L+1)/2ù items - Add the new child to the parent • new one with **ë(L+1)/2û** items - If the parent ends up with M+1 - Add the new child to the parent items, overflow! - If the parent ends up with M+1 Split an overflowed root in two and hang the new nodes under This makes the tree deeper!

Deletion in Two Boring Slides of Text Remove the key from its leaf If the leaf ends up with fewer than 62/20 items, under flow! Adopt data from a neighbor; update the parent If borrowing won't work, delete node and divide keys between neighbors If the parent ends up with fewer than 64/20 items, underflow!

B-trees vs AVL trees

We have a database* with 100 million items (100,000,000):

- · Depth of AVL Tree
- Depth of B+ Tree with B = 128, L = 64

*A very simple type of database, called "Berkeley Database" is basically a B+-tree

Thinking about B-Trees

- B-Tree insertion can cause (expensive) splitting and propagation
- B-Tree deletion can cause (cheap) borrowing or (expensive) deletion and propagation
- Propagation is rare if **M** and **L** are large (Why?)
- Repeated insertions and deletion can cause thrashing
- If $\mathbf{M} = \mathbf{L} = \mathbf{128}$, then a B-Tree of height 4 will store at least 30,000,000 items

A Tree with Any Other Name

FYI:

- B-Trees with M = 3, L = x are called 2-3 trees
 - Nodes can have 2 or 3 keys
- B-Trees with $\mathbf{M} = \mathbf{4}$, $\mathbf{L} = \mathbf{x}$ are called 2-3-4 trees
 - Nodes can have 2, 3, or 4 keys

Why would we ever use these?

Another Way

• B-Trees are hairy in practice

hairy - Slang. Fraught with difficulties; hazardous: a hairy escape; hairy problems.