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CSE 326: Data Structures
Don’t Sweat It - Splay It

Hannah Tang and Brian Tjaden
Summer Quarter 2002

AVL Trees: Are They Worth It?

Advantages
• Rotations are cool!

Disadvantages
• Wouldn’t want to meet one 

in a dark alley at night

Splay What?

• Blind adjusting version of AVL trees
– Why worry about balances?  Just rotate anyway!

• Amortized time for all operations is O(log n)
• Worst case time is O(n)
• Insert/Find always rotates node to the root!

Idea
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You’re forced to make 
a really deep access:

Since you’re down there anyway,
fix up a lot of deep nodes!

Zig-Zag*
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*This is just an AVL double rotation
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Zig-Zig*

*Yes, the original 1985 paper actually 
uses this terminology!
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Splaying Example
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Find(6)
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Still Splaying 6
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Almost There, Stay on Target*
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Splay Again

Find(4)

zig-zag

6

1

3

2 5

4

6

1

4

3 5

2

Example Splayed Out
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Why Splaying Helps

• If a node n on the access path is at depth d before 
the splay, it’s at about depth d/2 after the splay
– Exceptions are the root, the child of the root, and the 

node splayed

• Overall, nodes which are below nodes on the 
access path tend to move closer to the root

• Splaying gets amortized O(log n) performance. 

Splay Operations: Find

• Find the node in normal BST manner
• Splay the node to the root

Splay Operations: Insert

• Insert the node in normal BST manner
• Splay the node to the root

Splay Operations: Remove

find(x)

L R

x

L R

> x< x

delete x

Now what?

Join

• Join(L, R): given two trees such that L < R, merge them

• Splay on the maximum element in L then attach R

L R R

splay L

Proof by analogy is not a 
valid proof technique!

Insert Example
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Delete Example
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Delete(4)

Nifty Splay Operation: Splitting

• Split(T, x) creates two BSTs L and R:
– all elements of T are in either L or R  (T = L ∪ R)

– all elements in L are ≤ x
– all elements in R are ≥ x

– L and R share no elements (L ∩ R = ∅)

How do we split a splay tree?

Splitting Splays
split(x)

T L R

splay

OR

L R L R

≤ x ≥ x> x < x

void split(Node * root, Node *& left, 
Node *& right, Object x) {

Node * target = root ->find(x);
splay(target);
if (target < x) {

left = target->left;
target->left = NULL;
right = target; 

}
...

}

Pssstt: Another Way to Insert

split(x)

L R

x

L R

> x< x

void insert(Node *& root, Object x) {
Node * left, * right;
split(root, left, right, x);
root = new Node(x, left, right);

}
Interesting note: split-and-insert was 

the original algorithm.  But insert-
and-splay has better constants

Splay Tree Summary
• All operations are in amortized O(log n) time
• Splaying can be done top-down; better because:

– only one pass

– no recursion or parent pointers necessary

• Splay trees are very effective search trees
– Relatively simple
– No extra fields required

– Excellent locality properties: frequently accessed keys 
are cheap to find

Interlude: Amortized Analysis

• Consider any sequence of operations applied to a 
data structure
– Your worst enemy could choose the sequence!

• Some operations may be fast, others slow
• Goal: 

– Show that the average time per operation is still good

n
operationsn for   timetotal



5

Stack ADT

• Stack operations
– push

– pop
– isEmpty

• Stack property: if x is on the stack before y is 
pushed, then x will be popped after y is popped

What is biggest problem with an array implementation?

A

B
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E
F

E D C B A

F

Stretchy Stack Implementation

int * data;
int maxsize;
int top;

Push(e){
if (top == maxsize){

temp = new int[2*maxsize];
for (i=0;i<maxsize;i++) temp[i]=data[i]; ;
delete data;
data = temp; 
maxsize = 2*maxsize; }

else { data[++top] = e; }

Best case Push ∈ O(   )

Worst case Push ∈ O(   )

Stretchy Stack Amortized
Analysis

• Consider sequence of n operations
push(3); push(19); push(2); …

• What is the max number of stretches?
• What is the total time?

– let’s say a regular push takes time a, and stretching an array 
contain k elements takes time bk.

• Amortized time =

Series

• Arithmetic series:

• Geometric series: 
1
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Moral of the Story
• For more complicated 

analyses, this procedure is 
formalized with the idea of 
credit

• We said that a splay was 
O(log n)
– Always invest log n per splay
– For an easy splay, bank the 

leftover money
– For a hard splay, use money 

from the bank
– Prove there’s always enough 

money in the bank for any 
operation

Bug Brian or Hannah for more 
references on amortized analysis!


