
1

CSE 326: Data Structures
Don’t Sweat It - Splay It

Hannah Tang and Brian Tjaden
Summer Quarter 2002

AVL Trees: Are They Worth It?

Advantages
• Rotations are cool!

Disadvantages
• Wouldn’t want to meet one

in a dark alley at night

Splay What?

• Blind adjusting version of AVL trees
– Why worry about balances? Just rotate anyway!

• Amortized time for all operations is O(log n)
• Worst case time is O(n)
• Insert/Find always rotates node to the root!

Idea

17

10

92

5

3

You’re forced to make
a really deep access:

Since you’re down there anyway,
fix up a lot of deep nodes!

Zig-Zag*

g

X
p

Y

n

Z

W

*This is just an AVL double rotation

n

Y

g

W

p

ZX

Zig-Zig*

*Yes, the original 1985 paper actually
uses this terminology!

n

Z

Y

p

X

g

W

g

W

X

p

Y

n

Z

2

Zig

p

X

n

Y

Z

root

n

Z

p

Y

X

root

Splaying Example

2

1

3

4

5

6

Find(6)

2

1

3

6

5

4

zig-zig

Still Splaying 6

zig-zig
2

1

3

6

5

4

1

6

3

2 5

4

Almost There, Stay on Target*

zig

1

6

3

2 5

4

6

1

3

2 5

4

Splay Again

Find(4)

zig-zag

6

1

3

2 5

4

6

1

4

3 5

2

Example Splayed Out

zig-zag

6

1

4

3 5

2

61

4

3 5

2

3

Why Splaying Helps

• If a node n on the access path is at depth d before
the splay, it’s at about depth d/2 after the splay
– Exceptions are the root, the child of the root, and the

node splayed

• Overall, nodes which are below nodes on the
access path tend to move closer to the root

• Splaying gets amortized O(log n) performance.

Splay Operations: Find

• Find the node in normal BST manner
• Splay the node to the root

Splay Operations: Insert

• Insert the node in normal BST manner
• Splay the node to the root

Splay Operations: Remove

find(x)

L R

x

L R

> x< x

delete x

Now what?

Join

• Join(L, R): given two trees such that L < R, merge them

• Splay on the maximum element in L then attach R

L R R

splay L

Proof by analogy is not a
valid proof technique!

Insert Example

91

6

4 7

2

Insert(5)

4

Delete Example

91

6

4 7

2

Delete(4)

Nifty Splay Operation: Splitting

• Split(T, x) creates two BSTs L and R:
– all elements of T are in either L or R (T = L ∪ R)

– all elements in L are ≤ x
– all elements in R are ≥ x

– L and R share no elements (L ∩ R = ∅)

How do we split a splay tree?

Splitting Splays
split(x)

T L R

splay

OR

L R L R

≤ x ≥ x> x < x

void split(Node * root, Node *& left,
Node *& right, Object x) {

Node * target = root ->find(x);
splay(target);
if (target < x) {

left = target->left;
target->left = NULL;
right = target;

}
...

}

Pssstt: Another Way to Insert

split(x)

L R

x

L R

> x< x

void insert(Node *& root, Object x) {
Node * left, * right;
split(root, left, right, x);
root = new Node(x, left, right);

}
Interesting note: split-and-insert was

the original algorithm. But insert-
and-splay has better constants

Splay Tree Summary
• All operations are in amortized O(log n) time
• Splaying can be done top-down; better because:

– only one pass

– no recursion or parent pointers necessary

• Splay trees are very effective search trees
– Relatively simple
– No extra fields required

– Excellent locality properties: frequently accessed keys
are cheap to find

Interlude: Amortized Analysis

• Consider any sequence of operations applied to a
data structure
– Your worst enemy could choose the sequence!

• Some operations may be fast, others slow
• Goal:

– Show that the average time per operation is still good

n
operationsn for timetotal

5

Stack ADT

• Stack operations
– push

– pop
– isEmpty

• Stack property: if x is on the stack before y is
pushed, then x will be popped after y is popped

What is biggest problem with an array implementation?

A

B
C
D
E
F

E D C B A

F

Stretchy Stack Implementation

int * data;
int maxsize;
int top;

Push(e){
if (top == maxsize){

temp = new int[2*maxsize];
for (i=0;i<maxsize;i++) temp[i]=data[i]; ;
delete data;
data = temp;
maxsize = 2*maxsize; }

else { data[++top] = e; }

Best case Push ∈ O()

Worst case Push ∈ O()

Stretchy Stack Amortized
Analysis

• Consider sequence of n operations
push(3); push(19); push(2); …

• What is the max number of stretches?
• What is the total time?

– let’s say a regular push takes time a, and stretching an array
contain k elements takes time bk.

• Amortized time =

Series

• Arithmetic series:

• Geometric series:
1

11

0 −
−=

+

=
∑ A

AA
NN

i

i

1

(1)
2

N

i

N N
i

=

+
=∑

1
1

0

2 1
2 2 1

2 1

nn
i n

i

+
+

=

−
= = −

−∑

log 1log
log 1

0

2 1
2 (2)2 1 2 1

2 1

nn
i n

i

n
+

=

−
= = − = −

−∑

Moral of the Story
• For more complicated

analyses, this procedure is
formalized with the idea of
credit

• We said that a splay was
O(log n)
– Always invest log n per splay
– For an easy splay, bank the

leftover money
– For a hard splay, use money

from the bank
– Prove there’s always enough

money in the bank for any
operation

Bug Brian or Hannah for more
references on amortized analysis!

