CSE 326: Data Structures
More Heaps

Hannah Tang and Brian Tjaden
Summer Quarter 2002

Outline

» Extraheap operations
e d-heaps

 Leftist heaps

* Skew heaps

Other Priority Queue Operations

¢ decreaseKey
— given an object in the queue, reduce its priority value
* increaseKey

— given an object in the queue, increase its priority value
* remove

— remove a given object from the priority queue
* buildHeap

— given aset of items, build aheap

DecreaseK ey, IncreaseK ey, and
Remove

void decreaseKey (int obj, double decrease) {
// Position of object £ size

temp = Heaplobj] - decrease;

newPos = percolateUp(obj, temp); void remove (int obj) {

Heap [newPos] = temp; // Position of object X size
} percolateUp (obj,

NEG_INF_VAL) ;
deleteMin () ;

void increaseKey (int obj, double increase) {
// Position of object £ size

temp = Heaplobj] + increase;

newPos = percolateDown(obj, temp);

Heap [newPos] = temp;

}

BuildHeap naively

runtime:

BuildHeap

Floyd' s Method. Thank you, Floyd.

‘12‘5‘11‘3‘10‘6‘9‘4‘8‘1‘7‘2‘

pretend it's aheap and fix the heap-order property! ~

@
void buildHeap() {

for (i=size/2; i>0; i--)
o;e;c:;::enow:x?i,ﬂ;ap [i1); 6
}
©. f@
®EOOO

Bui Id(this)Heap

®
—_—
SYAY
DOOOO
12

Finally...

Shobd

runtime:

o

Thinking about Heaps

* Observations
— finding a child/parent index is amultiply/divide by two
— operations jump widely through the heap
— each operation looks at only two new nodes
— insertsare at least as common as deleteMins
« Redlities
— division and multiplication by powers of two are fast
— looking at one new piece of data sucksin acache line
— with huge data sets, disk accesses dominate

Solution: d-Heaps

Each node has d children

Still representable by array

Good choices for d:
isrimsplolololelelelolo

— choose apower of two for [1201]3]7[2[4]8]5[1211]1d 6]9]
efficiency

— fit one set of childrenina
cacheline

— fit one set of childrenona
memory page/disk block

One More Operation

* Mergetwo heaps. Ideas?

New Operation: Merge

Given two heaps, merge them into one heap

— first attempt: insert each element of the smaller heap
into the larger.

runtime:

— second attempt: concatenate heaps’ arraysand run
buildHeap.

runtime:

How about O(log n) time?

Idea: Hang a New Tree

Now, just
percolate down!

L eftist Heaps

e |dea

make it so that all the work you haveto doin
maintaining a heap isin one small part
o Leftist heap:
— amost all nodes are on the left
— all the merging work is on the right

L eftist Heap Properties

« Heap-order property

— parent’s priority valueis < to childrens priority values
— result: minimum element is at the root

 Leftist property
— null path length of left subtreeis > npl of right subtree
— result: treeisat least as “heavy” on theleft as the right

Areleftist trees complete?

Idea: Hang a New Tree

Problem?

Random Definition:
Null Path Length

the null path length (npl) of anode isthe number
of nodes between it and anull in the tree

« npl(null) =-1 (2
e npl(leaf) =0
 npl(single-child node) = 0 © ©

© @O © 0

another way of looking at it:
npl is the height of the perfect
subtree rooted at this node

0JOJO,

L eftist tree examples

NOT leftist leftist leftist

IO

Right Path in a Leftist Treeis Short

Theorem: If the right path

has length at least r, the tree o
hasat least 2* - 1 nodes [0) [0)

Proof by induction?

So, aleftist tree with at least n nodes has aright path
of at most Log n nodes

Right Path in a Leftist Treeis Short

Proof by induction
Basisir = 1.
Treehasat leastonenode: 21 - 1 = 1
o

Inductive step:

Assumetruefor r’ < r, and proveit'strue for r.

Theright subtree has aright path of at least r - 1 nodes, so it
hasatleast 2* - 1 - 1 nodes. The left subtree must also have
aright path of at least r - 1 (otherwise, thereisanull path of
r - 3,lessthan theright subtree). So the left subtree has

2r - 1 - 1 nodes. All told then, there are at least:
2r -1 -1 4+ 2fr-1 -1 4+1=2% -1

Whew!

Merging Two Leftist Heaps

* merge(T,,T,) returns one | eftist heap containing all
elements of the two (distinct) leftist heaps T, and T,

A A a<b, A "‘efg 777777777777
ANYAN

Merge Continued
(2) (2)

npl(R") > npl(L,)

ANV/ANEVANYA

R" =Merge(Ry, T,)

runtime:

Operations on L eftist Heaps

* merge with two trees of total sizen: O(log n)
* insert with heap size n: O(log n)
— pretend nodeis asize 1 | eftist heap
— insert by merging original heap with one node heap

RN

» deleteMin with heap size n: O(log n)
— remove and return root
— merge left and right subtrees

KA AA™A

merge
2
{ 0 0 merge.____
| ey
3 @ 0 O, X0
0 0
O ©
o

Sewing Up the Example

@p ﬁo

)

Done?

Finally...

Recursive merge for leftist heaps

LeftistHeapNode merge (LeftistHeapNode hl, LeftistHeapNode h2) {
if (hl == null) return h2;

if (h2 == null) return hl;
if (hl.priority() < h2.priority()) return mergel(hl, h2);
else return mergel (h2,hl);

}

LeftistHeapNode mergel (LeftistHeapNode hl, LeftistHeapNode h2) {
if (hl.left == null) hl.left = h2; // hl has a single node
else {

hl.right = merge(hl.right, h2);
if (hl.left.npl() < hl.right.npl()) swapChildren(hl);
hl.npl = hl.right.npl() + 1;

}

return hl;

}

Iterative Leftist Merging

downward pass: merge right paths in sorted order

merge
0 0
1
(3
0 0
® @
o

Iterative Leftist Merging
upward pass: fix right path (leftist heap property)
by swapping children

1

©

What do we need to do
thisiteratively?

Random Definition:
Amortized Time

am-or-tize time
To write off an expenditurefor (office A nonspatial continuum in which
equipment, for example) by prorating events occur in apparently
over acertain period. irreversible succession from the past

through the present to the future.

am-or-tized time
Running timelimit resulting from writing off expensive
runs of an algorithm over multiple cheap runs of the
algorithm, usually resulting in alower overall running time
than indicated by the wor st possible case.

If M operations take total O(M log N) time,
amortized time per operation is O(log N)

Skew Heaps

* Problems with leftist heaps

— extra storage for npl

— two pass merge (with stack!)

— extracomplexity/logic to maintain and check npl
 Solution: skew heaps

— blind adjusting version of leftist heaps

— amortized time for merge, insert, and deleteMin is O(log n)

— worst case time for al threeis O(n)

— merge always switches children when fixing right path

— iterative method has only one pass

Merging Two Skew Heaps

/NN AN A

Skew Heap Code

SkewHeapNode merge (heapl, heap2) (

case {
heapl == NULL: return heap2;
heap2 == NULL: return heapl;

heapl.findMin() < heap2.findMin():
temp = heapl.right;
heapl.right = heapl.left;
heapl.left = merge (heap2, temp);
return heapl;

otherwise:

return merge(heap2, heapl)

Example
merge.
merge
®
D @
L
Comparing Heaps
« Binary Heaps o Leftist Heaps
+ d-Heaps + Skew Heaps

« Binomia Queues

