

Other Priority Queue Operations

- decreaseKey
- given an object in the queue, reduce its priority value
- increaseKey
- given an object in the queue, increase its priority value
- remove
- remove a given object from the priority queue
- buildHeap
- given a set of items, build a heap

DecreaseKey, IncreaseKey, and Remove
void decreaseKey(int obj, double decrease) \{
// Position of object \leq size
temp = Heap [obj] - decrease;
newPos $=$ percolateUp (obj, temp);
Heap [newPos] = temp;
\}
void remove (int obj) \{
-// position of object \leq si
percolateUp (obj,
NEG_INF_VAL); $\xrightarrow[\text { deletemin(); }]{\text { NEG }}$
$\}^{\mathrm{de}}$
void increaseKey (int obj, double increase) \{
// Position of object \leq size
temp $=$ Heap [obj] + increase;
newPos $=$ percolateDown (obj, temp);
Heap [newPos] = temp;
\}

Thinking about Heaps

- Observations
- finding a child/parent index is a multiply/divide by two
- operations jump widely through the heap
- each operation looks at only two new nodes
- inserts are at least as common as deleteMins
- Realities
- division and multiplication by powers of two are fast
- looking at one new piece of data sucks in a cache line
- with huge data sets, disk accesses dominate

Finally...

runtime:

Solution: d-Heaps

- Each node has d children
- Still representable by array
- Good choices for d :
- optimize performance based on \# of inserts/removes
- choose a power of two for efficiency
- fit one set of children in a cache line
- fit one set of children on a memory page/disk block

One More Operation

- Merge two heaps. Ideas?

New Operation: Merge

Given two heaps, merge them into one heap

- first attempt: insert each element of the smaller heap into the larger.
runtime:
- second attempt: concatenate heaps' arrays and run buildHeap.
runtime:

Leftist Heaps

- Idea:
make it so that all the work you have to do in maintaining a heap is in one small part
- Leftist heap:
- almost all nodes are on the left
- all the merging work is on the right

Random Definition:
 Null Path Length
 the null path length (npl) of a node is the number of nodes between it and a null in the tree

- $\operatorname{npl}($ null $)=-1$
- $\operatorname{npl}($ leaf $)=0$
- $n \mathrm{nl}($ single-child node $)=0$
another way of looking at it:
$n p l$ is the height of the perfect

subtree rooted at this node

Leftist Heap Properties

- Heap-order property
- parent's priority value is \leq to childrens' priority values
- result: minimum element is at the root
- Leftist property
- null path length of left subtree is $\geq n p l$ of right subtree
- result: tree is at least as "heavy" on the left as the right

Are leftist trees complete?

Leftist tree examples

Right Path in a Leftist Tree is Short

- Theorem: If the right path has length at least \boldsymbol{r}, the tree has at least $2^{\text {r }}-1$ nodes

- Proof by induction?
- So, a leftist tree with at least \mathbf{n} nodes has a right path of at most $\log \mathrm{n}$ nodes

Right Path in a Leftist Tree is Short

Assume true for $r^{\prime}<r$, and prove it's true for r.
The right subtree has a right path of at least $r-1$ nodes, so it has at least $2^{r-1}-1$ nodes. The left subtree must also have a right path of at least $\mathbf{r}-\mathbf{1}$ (otherwise, there is a null path of $\mathbf{r}-3$, less than the right subtree). So the left subtree has
$2^{r}-1-1$ nodes. All told then, there are at least:
$2^{\mathrm{r}-1}-1+2^{\mathrm{r}-1}-1+1=2^{\mathrm{r}}-1$

Operations on Leftist Heaps

- merge with two trees of total size $n: \mathrm{O}(\log n)$
- insert with heap size $n: \mathrm{O}(\log n)$
- pretend node is a size 1 leftist heap
- insert by merging original heap with one node heap

- deleteMin with heap size $n: \mathrm{O}(\log n)$
- remove and return root
- merge left and right subtrees

Con
\rightarrow
\longrightarrow

Recursive merge for leftist heaps

LeftistHeapNode merge(LeftistHeapNode h1, LeftistHeapNode h2) \{ if (h1 == null) return h2;
if (h2 == null) return h1;
if (h1.priority() < h2.priority()) return mergel(h1,h2); else return mergel (h2,h1);
\}
LeftistHeapNode mergel(LeftistHeapNode h1, LeftistHeapNode h2) \{
if (h1.left $==$ null) h1.left $=\mathrm{h} 2$; // h1 has a single node else \{
h1.right $=$ merge (h1.right, h2);
if (h1.left.npl() < h1.right.npl()) swapChildren(h1); h1.npl = h1.right.npl() + 1;
\}
return h1;
\}

Iterative Leftist Merging
downward pass: merge right paths in sorted order

Random Definition: Amortized Time
am. or tized tim Runs of time ans of an algorithm over multiple cheap runs of the than indicated by the worst possible case.
If M operations take total $O(M \log N)$ time, amortized time per operation is $O(\log N)$

Skew Heaps

- Problems with leftist heaps
- extra storage for $n p l$
- two pass merge (with stack!)
- extra complexity/logic to maintain and check $n p l$
- Solution: skew heaps
- blind adjusting version of leftist heaps
- amortized time for merge, insert, and deleteMin is $\mathrm{O}(\log n)$
- worst case time for all three is $\mathrm{O}(n)$
- merge always switches children when fixing right path
- iterative method has only one pass

Comparing Heaps

- Binary Heaps
- Leftist Heaps
- Binomial Queues

