
1

CSE 326: Data Structures
More Heaps

Hannah Tang and Brian Tjaden

Summer Quarter 2002

Outline

• Extra heap operations

• d-heaps

• Leftist heaps

• Skew heaps

Other Priority Queue Operations

• decreaseKey
– given an object in the queue, reduce its priority value

• increaseKey
– given an object in the queue, increase its priority value

• remove
– remove a given object from the priority queue

• buildHeap
– given a set of items, build a heap

DecreaseKey, IncreaseKey, and
Remove

void decreaseKey(int obj, double decrease) {

 ���3RVLWLRQ�RI�REMHFW���VL]H
 temp = Heap[obj] - decrease;

 newPos = percolateUp(obj, temp);

 Heap[newPos] = temp;

}

void increaseKey(int obj, double increase) {

 ���3RVLWLRQ�RI�REMHFW���VL]H
 temp = Heap[obj] + increase;

 newPos = percolateDown(obj, temp);

 Heap[newPos] = temp;

}

void remove(int obj) {
 ���3RVLWLRQ�RI�REMHFW���VL]H
 percolateUp(obj,
 NEG_INF_VAL);
 deleteMin();
}

BuildHeap naïvely

runtime:

BuildHeap
Floyd’s Method. Thank you, Floyd.

5 11 3 10 6 9 4 8 1 7 212

pretend it’s a heap and fix the heap-order property!

27184

96103

115

12
void buildHeap() {
 for(i=size/2; i>0; i--)
 percolateDown(i,Heap[i]);
}

2

Build(this)Heap

67184

92103

115

12

671084

9213

115

12

1171084

9613

25

12

1171084

9653

21

12

Finally…

11710812

9654

23

1

runtime:

Thinking about Heaps

• Observations
– finding a child/parent index is a multiply/divide by two

– operations jump widely through the heap

– each operation looks at only two new nodes

– inserts are at least as common as deleteMins

• Realities
– division and multiplication by powers of two are fast

– looking at one new piece of data sucks in a cache line

– with huge data sets, disk accesses dominate

4

9654

23

1

8 1012

7

11

Solution: d-Heaps

• Each node has d children

• Still representable by array

• Good choices for d:
– optimize performance based

on # of inserts/removes

– choose a power of two for
efficiency

– fit one set of children in a
cache line

– fit one set of children on a
memory page/disk block

3 7 2 8 5 121110 6 9112

One More Operation

• Merge two heaps. Ideas?

New Operation: Merge

Given two heaps, merge them into one heap
– first attempt: insert each element of the smaller heap

into the larger.

runtime:

– second attempt: concatenate heaps’ arrays and run
buildHeap.

runtime:

How about O(log n) time?

3

Idea: Hang a New Tree

1213106

115

2

+

1014

49

1

=

141213106

49115

12

?

10

Now, just
percolate down!

Idea: Hang a New Tree

1213106

115

2

+ =

1213106

1213106

115

2

1213106

Problem?

Leftist Heaps

• Idea:

make it so that all the work you have to do in
maintaining a heap is in one small part

• Leftist heap:
– almost all nodes are on the left

– all the merging work is on the right

the null path length (npl) of a node is the number
of nodes between it and a null in the tree

Random Definition:
Null Path Length

• npl(null) = -1

• npl(leaf) = 0

• npl(single-child node) = 0

000

001

11

2

another way of looking at it:
npl is the height of the perfect
subtree rooted at this node

0

Leftist Heap Properties

• Heap-order property
– parent’s priority value is ≤ to childrens’ priority values

– result: minimum element is at the root

• Leftist property
– null path length of left subtree is ≥ npl of right subtree

– result: tree is at least as “heavy” on the left as the right

Are leftist trees complete?

Leftist tree examples

NOT leftist leftist

00

001

11

2

0

0

000

11

2

1

000

0

0

0

0

0

1

0

leftist

0

every subtree of a leftist
tree is leftist, comrade!

4

Right Path in a Leftist Tree is Short

• Theorem: If the right path
has length at least r, the tree

has at least 2r - 1 nodes

• Proof by induction?
• So, a leftist tree with at least n nodes has a right path

of at most log n nodes

0

000

11

2

1

00

Right Path in a Leftist Tree is Short

Proof by induction
Basis: r = 1.

Tree has at least one node: 21 - 1 = 1

Inductive step:
Assume true for r’ < r, and prove it’s true for r.

The right subtree has a right path of at least r - 1 nodes, so it
has at least 2r - 1 - 1 nodes. The left subtree must also have
a right path of at least r - 1 (otherwise, there is a null path of
r - 3, less than the right subtree). So the left subtree has

2r - 1 - 1 nodes. All told then, there are at least:

2r - 1 - 1 + 2r - 1 - 1 + 1 = 2r - 1

0

000

11

2

1

00

Whew!

Merging Two Leftist Heaps

• merge(T1,T2) returns one leftist heap containing all
elements of the two (distinct) leftist heaps T1 and T2

a

L1 R1

b

L2 R2

merge
T1

T2

a < b

a

L1

merge

b

L2 R2

R1

Merge Continued

a

L1 R’

R’ = Merge(R1, T2)

a

R’ L1

npl(R’) > npl(L1)

runtime:

Operations on Leftist Heaps
• merge with two trees of total size n: O(log n)

• insert with heap size n: O(log n)
– pretend node is a size 1 leftist heap

– insert by merging original heap with one node heap

• deleteMin with heap size n: O(log n)
– remove and return root

– merge left and right subtrees

merge

merge

5

Example

1210

5

87

3

14

1

0 0

1

0 0

0

merge

7

3

14

?

0

0

1210

5

8

1

0 0

0

merge

10

5
?

0 merge

12

8

0

0

8

12

0

0

Sewing Up the Example

8

12

0

0

10

5
?

0

7

3

14

?

0

0

8

12

0

0

10

5
1

0

7

3

14

?

0

0
8

12

0

0

10

5 1

0

7

3

14

1

0

0

Done?

Finally…

8

12

0

0

10

5 1

0

7

3

14

1

0

0

7

3

14

1

0

0
8

12

0

0

10

5 1

0

Recursive merge for leftist heaps
LeftistHeapNode merge(LeftistHeapNode h1, LeftistHeapNode h2) {

 if (h1 == null) return h2;

 if (h2 == null) return h1;

 if (h1.priority() < h2.priority()) return merge1(h1,h2);

 else return merge1(h2,h1);

}

LeftistHeapNode merge1(LeftistHeapNode h1, LeftistHeapNode h2) {

 if (h1.left == null) h1.left = h2; // h1 has a single node

 else {

 h1.right = merge(h1.right, h2);

 if (h1.left.npl() < h1.right.npl()) swapChildren(h1);

 h1.npl = h1.right.npl() + 1;

 }

 return h1;

}

Iterative Leftist Merging

1210

5

87

3

14

1

0 0

1

0 0

0

merge

downward pass: merge right paths in sorted order

8

12

0

0

10

5 1

0

7

3

14

1

0

0

Iterative Leftist Merging
upward pass: fix right path (leftist heap property)

by swapping children

8

12

0

0

10

5 1

0

7

3

14

1

0

0
8

12

0

0

10

5 1

0

7

3

14

1

0

0
8

12

0

0

10

5 1

0

7

3

14

1

0

0

7

3

14

1

0

0
8

12

0

0

10

5 1

0

What do we need to do
this iteratively?

6

Random Definition:
Amortized Time

am·or· tize
 To write off an expenditure for (office
 equipment, for example) by prorating
 over a certain period.

time
 A nonspatial continuum in which
 events occur in apparently
 irreversible succession from the past
 through the present to the future.

am· or· tized time
 Running time limit resulting from writing off expensive
 runs of an algorithm over multiple cheap runs of the
 algorithm, usually resulting in a lower overall running time
 than indicated by the worst possible case.

If M operations take total O(M log N) time,
amortized time per operation is O(log N)

Skew Heaps
• Problems with leftist heaps

– extra storage for npl

– two pass merge (with stack!)

– extra complexity/logic to maintain and check npl

• Solution: skew heaps
– blind adjusting version of leftist heaps

– amortized time for merge, insert, and deleteMin is O(log n)

– worst case time for all three is O(n)

– merge always switches children when fixing right path

– iterative method has only one pass

Merging Two Skew Heaps

a

L1 R1

b

L2 R2

merge
T1

T2

a < b

a

L1

merge

b

L2 R2

R1

Example

1210

5

87

3

14

merge

7

3

14
1210

5

8

merge
7

3

1410

5

8

merge
12

7

3

14108

5

12

Skew Heap Code
SkewHeapNode merge(heap1, heap2) {

case {

heap1 == NULL: return heap2;

heap2 == NULL: return heap1;

heap1.findMin() < heap2.findMin():

temp = heap1.right;

heap1.right = heap1.left;

heap1.left = merge(heap2, temp);

return heap1;

otherwise:

return merge(heap2, heap1);

}

}

Comparing Heaps

• Binary Heaps

• d-Heaps

• Binomial Queues

• Leftist Heaps

• Skew Heaps

