CSE 326: Data Structures
Asymptotic Analysis

Hannah Tang and Brian Tjaden
Summer Quarter 2002

Today’s Outline

How’ s the project going?

Finish up stacks, queues, lists, and bears, oh my!
Math review and runtime analysis

Pretty pictures

Asymptotic analysis

Analyzing Algorithms: Why Bother?

Analyzing Algorithms

» Computer scientists analyze algorithmsto precisely
characterize an algorithm’s:
— Time complexity (running time)
— Space complexity (memory use)

« Thisallowsusto get abetter sense of the various tradeoffs
between several algorithms

— For instance, do we know how complex the 1984 algorithmiis,
compared to the 1945 agorithm?

A problem’sinput sizeisindicated by anumber n
— Sometimes have multipleinputs, e.g.m andn

* Therunning time of an algorithmisafunction of n
—n, 2, nlogn, 18+ X(logr?)+5r?

" B
Sy -
e — =
*
g
Fun b Laar
T re——— Faxicr
Har -
Ly L
ks
By .
T T Ll)
From “Programming Pearls’, by Jon Bentley
Communications of the ACM , Nov 1984
Hannah Takes a Break
bool ArrayFind(int array[],
int n,
int key)

{

Il Insert your algorithm

here

What algorithmwould you choose
to implement this code snippet?

Hannah Takes a Break:
Simplifying assumptions
* |deal single-processor machine (serialized
operations)
e “Standard” instruction set (load, add, store, etc.)

« All operations take 1 time unit (including, for our
purposes, each Javaor C++ statement

HTaB: Analyzing Code

Basic Java/C++ operations
Consecutive statements
Conditionals

Loops

Function calls

Recursive functions

Constant time

Sum of times

Larger branch plustest
Sum of iterations

Cost of function body
Solve recurrence relation

HTaB: Linear Search Analysis

bool ArrayFi nd(int array[],

HTaB: Binary Search Analysis

bool ArrayFind(int array[],

int s,

int e, int key) {

/'l The subarray is enpty

if(e-s<=0)
return fal se;

/1 Search this subarray
int mid=(e-s)/ 2

* Exact Runtime:

* Best case:

if(array[key] == array[md]) {

return true;

} else if(key < array[md]) {

* Worst case:

return ArrayFind(array, s,

int n, L
int key) * Exact Runtime:
{
f int i =0; i |
(or(|n i i <n i++) . Best Case:
/1 Found it!
if(array[i] == key)
) return true; « Worst Case:
return fal se;
}
Back to work:

Solving Recurrence Relations

1. Determinetherecurrencerelation. What are the base case(s)?

2. “Expand” theoriginal relation to find an equivalent general
expression in terms of the number of expansions.

3. Find aclosed-form expression by settingthe number of
expansions to avalue which reduces the problem to a base case

md, key);

} else {

return ArrayFind(array, md,
e, key);
}
Linear Search vs Binary Search

| inear Search Binary Search

Exact Runtime

Best Case.

Worst Case

S0 ... which algorithmis best?

What the tradeoffs did you make?

Fast Computer vs. Slow Computer

S}

Tt n s

n an 41 L]
2alis o ba saarchiad

Fast Computer vs. Smart Programmer
(round 1)

nma
n

L

ol A4n Bk L] L]

¥ olts Lo b eabircdvind

Fast Computer vs. Smart Programmer

Asymptotic Analysis

* Asymptotic analysislooks at theorder of the
running time of the algorithm
— A valuabletool when theinput gets“large”
— Ignores the effects of different machines or different

implementations of the same algorithm

« Intuitively, to find the asymptotic runtime, throw
away the constants and low-order terms
— Linear searchisT(n)=n1 O(n)
— Binary searchisT(n) =T(n) = 4log,n+ 11 O(log n)

Remember: the fastest algorithm hasthe
slowest growing function for its runtime

(round 2)

111}
i:. [8]
s

200

I-:I: 2H) TH1] (=11 F2 11 1an
E aks o be searched
Order Notation: Intuition
f(n) =n3 +2r2 =

o(n) = 100r? + 1000

L I ’ E a T E
Although not yet apparent, as n gets “sufficiently
large”, f(n) will be“greater than or equal to” g(n)

Order Notation; Definition

O(f(n)) isaset of functions

g(n) T O(f(n))iff
There exist c and n, such that g(n) £ cf(n)
foraln3 n,

Example:
100n? + 1000 £5 (n®+2n?) for alln3 19
Sog(n) 1 O(f(n))

Sometimes, you' |l see the notationg(n) = O(f(n)). This equivalent
tog(n)1 O(f(n)). However, the notation O(f(n)) = g(n) isnot
correct

_O_rder Notation: Example

I0n"2 4 Lam

Tpsti
2paidy |

Tps08

a e
oM B0 B) 100 130 140 180 1B BN

100n?+ 1000 £5 (n®+2n?) for aln3 19
Sog(n)T O(f(n))

Oops: Set Notation

“O(f(n))isaset
of functions”

2

ox2®
Xeog
100n2| ogn
So we say both
100n? logn= O(r#) and
100n2 lognl O(n3)

Set Notation

6"log n2

Set notation allows us to
formalize our intuition
o(nd)c O(2)

Big-O Common Names

Meet the Family

e O(f(n)) istheset of al functions asymptotically
less than or equal tof(n)

— o f(n))isthe set of al functions asymptotically
strictly less thanf(n)
e W(f(n)) istheset of al functionsasymptotically
greater than or equal to f(n)
— w(f(n)) isthe set of all functions asymptotically
strictly greater thanf(n)

e q(f(n)) isthe set of all functions asymptoticaly
equa to f(n)

constant: 0o(1)

logarithmic: O(log n)

linear: Oo(n)

log-linear: O(nlogn)

superlinear: O(n**)(cisaconstant, where0< c< 1)

quadratic: 0o(n?

polynomial: Oo(n%) (k isaconstant)

exponential: o(c") (cisaconstant > 1)
Meet the Family Formally

(don’t worry about dressing up)

o g1 O(f(n)) iff
There exist ¢ and n, such that g(n) £ cf(n) foraln s n,
= gmT o f(n)) iff
There existsan, such that g(n) < c f(n) for all candn 3 ng
+ on) T W(f(n))iff
There exist ¢ and n, such that g(n) * ¢ f(n) for al n3 n,
—g(n)T w(f(n)) iff
There existsan, such that g(n) >c f(n) for al candn3 n,
< om T aCi@) it
gn) I O(f(n)) andg(n) I W(f(n))

Big-Omegaet al. Intuitively

TASymprotic Notaton [Manhemarcs Reraon
O £

AAL
vV

o]
v AN

True or False?

10,000 n2+25n1 q(n?)

10°n2] g(nd)

n3+ 41 w(n?

nlogni O(2")

nlogni Wn)

nd+41 o(n%

Another Kind of Analysis

¢ Runtime may depend on actua input, not just
length of input
Analysis based on input type:
— Worst case
« Your worst enemy is choosing input
— Average case
« Assumea probability distribution of inputs
— Best case
 Not too useful
Amortized analysis

« Runtime over many runs, regardless of underlying probability
for inputs

HTaB: Pros and Cons of
Asymptotic Analysis

To Do

« Start project 1

— DueMonday, July 1< at 10 PM sharp!

« Signup for 326 mailing list(s)

— Don't forget to use the new web interfaces!

» Preparefor tomorrow’s quiz

— Possible topics:
« Math concepts from 321 (skim section 1.2 in Weiss)
« Lists, stacks, queues, and the tradeoffs between various
implementations

* Whatever asymptotic analysis stuff we covered today

+ Possible middle names for Brian C. Tjaden, Hannah C. Tang, and
Albert J. Wong

» Read chapter 2 (algorithm analysis), section 4.1

(introduction to trees), and sections 6.1-6.4 (priority
queues and binary heaps)

