

Today's Outline

- How's the project going?
- Finish up stacks, queues, lists, and bears, oh my!
- Math review and runtime analysis
- Pretty pictures
- Asymptotic analysis

Analyzing Algorithms: Why Bother?

Analyzing Algorithms

- Computer scientists analyze algorithms to precisely characterize an algorithm's:
- Time complexity (running time)
- Space complexity (memory use)
- This allows us to get a better sense of the various tradeoffs between several algorithms
- For instance, do we know how complex the 1984 algorithm is, compared to the 1945 algorithm?

A problem's input size is indicated by a number n

- Sometimes have multiple inputs, e.g. m and n
- The running time of an algorithm is a function of n - n, $\quad 2^{n}, \quad n \log n, \quad 18+3 n\left(\log n^{2}\right)+5 n^{3}$

Hannah Takes a Break

```
bool ArrayFind(int array[],
            int n,
            int key )
{
    // Insert your algorithm
    here
```


What algorithm would you choose to implement this code snippet?

Hannah Takes a Break:

Simplifying assumptions

- Ideal single-processor machine (serialized operations)
- "Standard" instruction set (load, add, store, etc.)
- All operations take 1 time unit (including, for our purposes, each Java or C++ statement

HTaB: Analyzing Code	
Basic Java/C++ operations	Constant time
Consecutive statements	Sum of times
Conditionals	Larger branch plus test
Loops	Sum of iterations
Function calls	Cost of function body
Recursive functions	Solve recurrence relation

HTaB: Linear Search Analysis		
	```for( int i = 0; i < n; i++ ) { // Found it! if( array[i] == key ) return true; } return false;```	- Best Case:   - Worst Case:

HTaB: Binary Search Analysis
bool ArrayFind ( int array[], int s,
int key )
// The subarray is empty

- Exact Runtime :
if ( $e-s<=0$ )
return false;
// Search this subarray - Best case:
int mid $=(e-s) / 2$;
if ( array[key] == array[mid] ) \{ return true;
\} else if ( key < array[mid] ) \{ • Worst case: return ArrayFind( array, s, mid, key );

3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case

Fast Computer vs. Slow Computer


Fast Computer vs. Smart Programmer
(round 1)


Fast Computer vs. Smart Programmer (round 2)


## Asymptotic Analysis

- Asymptotic analysis looks at the order of the running time of the algorithm
- A valuable tool when the input gets "large"
- Ignores the effects of different machines or different implementations of the same algorithm
- Intuitively, to find the asymptotic runtime, throw away the constants and low-order terms
- Linear search is $\mathrm{T}(n)=n \in \mathrm{O}(n)$
- Binary search is $\mathrm{T}(n)=\mathrm{T}(n)=4 \log _{2} n+1 \in \mathrm{O}(\log n)$


## Order Notation: Definition

```
O(f(n)) is a set of functions
 g(n)\in O(f(n)) iff
 There exist c and n}\mp@subsup{n}{0}{}\mathrm{ such that g}\textrm{g}(n)\leqc\textrm{f}(n
 for all }n\geq\mp@subsup{n}{0}{
 Example:
 100\mp@subsup{n}{}{2}+1000\leq5(\mp@subsup{n}{}{3}+2\mp@subsup{n}{}{2})\mathrm{ for all }n\geq19
 So g(n)\inO(f(n))
 Sometimes, you'll see the notation }\textrm{g}(n)=\textrm{O}(\textrm{f}(n))\mathrm{ . This equivalent
 to g(n)\in\textrm{O}(\textrm{f}(n)).}\mathrm{ . However, the notation }\textrm{O}(\textrm{f}(n))=\textrm{g}(n)\mathrm{ is not
 correct
```



Order Notation: Intuition
$\mathrm{f}(n)=n^{3}+2 n^{2}$
$\mathrm{g}(n)=100 n^{2}+1000$


Although not yet apparent, as $n$ gets "sufficiently large", $\mathrm{f}(n)$ will be "greater than or equal to" $\mathrm{g}(n)$



Big-O Common Names		
constant:	$\mathrm{O}(1)$	
logarithmic:	$\mathrm{O}(\log n)$	
linear:	$\mathrm{O}(n)$	
log-linear:	$\mathrm{O}(n \log n)$	
superlinear:	$\mathrm{O}\left(n^{1+\mathrm{c}}\right)(\mathrm{c}$ is a constant, where $0<\mathrm{c}<1)$	
quadratic:	$\mathrm{O}\left(n^{2}\right)$	
polynomial:	$\mathrm{O}\left(n^{\mathrm{k}}\right)$	( k is a constant)
exponential:	$\mathrm{O}\left(\mathrm{c}^{n}\right)$	(c is a constant

## Meet the Family

- $\mathrm{O}(\mathrm{f}(n))$ is the set of all functions asymptotically less than or equal to $\mathrm{f}(n)$
- $o(f(n))$ is the set of all functions asymptotically strictly less than $\mathrm{f}(n)$
- $\Omega(\mathrm{f}(n))$ is the set of all functions asymptotically greater than or equal to $\mathrm{f}(n)$
- $\omega(\mathrm{f}(n))$ is the set of all functions asymptotically strictly greater than $\mathrm{f}(n)$
- $\theta(\mathrm{f}(n))$ is the set of all functions asymptotically equal to $\mathrm{f}(n)$


## Meet the Family Formally

(don't worry about dressing up)

- $\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))$ iff

There exist $c$ and $n_{0}$ such that $\mathrm{g}(n) \leq c \mathrm{f}(n)$ for all $n \geq n_{0}$ $-\mathrm{g}(n) \in \mathrm{o}(\mathrm{f}(n))$ iff
There exists a $n_{0}$ such that $\mathrm{g}(n)<c \mathrm{f}(n)$ for all $c$ and $n \geq n_{0}$

- $\mathrm{g}(n) \in \Omega(\mathrm{f}(n))$ iff

There exist $c$ and $n_{0}$ such that $\mathrm{g}(n) \geq c \mathrm{f}(n)$ for all $n \geq n_{0}$ $-\mathrm{g}(n) \in \omega(\mathrm{f}(n))$ iff

There exists a $n_{0}$ such that $\mathrm{g}(n)>c \mathrm{f}(n)$ for all $c$ and $n \geq n_{0}$

- $\mathrm{g}(n) \in \theta(\mathrm{f}(n))$ iff
$\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))$ and $\mathrm{g}(n) \in \Omega(\mathrm{f}(n))$

Big-Omega et al. Intuitively


True or False?	
$10,000 n^{2}+25 n \in \Theta\left(n^{2}\right)$	
$10^{-10} n^{2} \in \theta\left(n^{2}\right)$	
$n^{3}+4 \in \omega\left(n^{2}\right)$	
$n \log n \in \mathrm{O}\left(2^{\prime \prime}\right)$	
$n \log n \in \Omega(n)$	
$n^{3}+4 \in \mathrm{o}\left(n^{4}\right)$	

## Another Kind of Analysis

- Runtime may depend on actual input, not just length of input
- Analysis based on input type:
- Worst case
- Your worst enemy is choosing input
- Average case
- Assume a probability distribution of inputs
- Best case
- Not too useful
- Amortized analysis
- Runtime over many runs, regardless of underlying probability for inputs

HTaB: Pros and Cons of
Asymptotic Analysis

## To Do

- Start project 1
- Due Monday, July $1^{\text {st }}$ at 10 PM sharp!
- Sign up for 326 mailing list(s)
- Don't forget to use the new web interfaces!
- Prepare for tomorrow's quiz
- Possible topics:
- Math concepts from 321 (skim section 1.2 in Weiss)
- Lists, stacks, queues, and the tradeoffs between various
implementations
- Whatever asymptotic analysis stuff we covered today
- Possible middle names for Brian C. Tjaden, Hannah C. Tang, and Albert J. Wong
- Read chapter 2 (algorithm analysis), section 4.1 (introduction to trees), and sections 6.1-6.4 (priority queues and binary heaps)

