

Today's Outline

- How's the project going?
- Finish up stacks, queues, lists, and bears, oh my!
- Math review and runtime analysis
- Pretty pictures
- Asymptotic analysis

HTaB: Analyzing Code

Basic Java/C++ operations Consecutive statements Conditionals Loops Function calls Recursive functions Constant time Sum of times Larger branch plus test Sum of iterations Cost of function body Solve recurrence relation

Big-O Common Names

constant:	O(1)	
logarithmic:	$O(\log n)$	
linear:	O(n)	
log-linear:	$O(n \log n)$	
superlinear:	$O(n^{1+c})(c)$	s a constant, where $0 < c < 1$)
quadratic:	$O(n^2)$	
polynomial:	$O(n^k)$	(k is a constant)
exponential:	$O(c^n)$	(c is a constant > 1)

Meet the Family

- O(f(n)) is the set of all functions asymptotically less than or equal to f(n)
 - o(f(n)) is the set of all functions asymptotically strictly less than f(n)
- Ω(f(n)) is the set of all functions asymptotically greater than or equal to f(n)
 ω(f(n)) is the set of all functions asymptotically
 - strictly greater than f(n)
- θ(f(n)) is the set of all functions asymptotically equal to f(n)

Meet the Family Formally (don't worry about dressing up)

• $g(n) \in O(f(n))$ iff

There exist *c* and n_0 such that $g(n) \pounds c f(n)$ for all $n \ge n_0$ - $g(n) \in o(f(n))$ iff

There exists a n_0 such that g(n) < c f(n) for all c and $n \ge n_0$ • $g(n) \in \Omega(f(n))$ iff

- There exist c and n_0 such that $g(n) \stackrel{\mathfrak{s}}{\to} c f(n)$ for all $n \ge n_0$ - $g(n) \in \omega(f(n))$ iff
 - There exists a n_0 such that g(n) > c f(n) for all c and $n \ge n_0$

• $g(n) \in \theta(f(n))$ iff $g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$

Big-Omega et al. Intuitively

Asymptotic Notation	Mathematics Relation
0	≦
Ω	<u> </u>
θ	=
0	<
ω	>

$10,000 n^2 + 25n \in \Theta(n^2)$	
$10^{-10} n^2 \in \Theta(n^2)$	
$n^3 + 4 \in \omega(n^2)$	
$n \log n \in O(2^n)$	
$n \log n \in \Omega(n)$	
$n^3 + 4 \in o(n^4)$	

HTaB: Pros and Cons of Asymptotic Analysis

To Do

- Start project 1 Due Monday, July 1st at 10 PM sharp!
- Sign up for 326 mailing list(s) Don't forget to use the new web interfaces! ٠
- · Prepare for tomorrow's quiz
- Possible topics:
 Math concepts from 321 (skim section 1.2 in Weiss)
 Lists, stacks, queues, and the tradeoffs between various implementations
 Whatever asymptotic analysis stuff we covered today
 Possible width except Point Code View topics

 - Possible middle names for Brian C. Tjaden, Hannah C. Tang, and Albert J. Wong
- Read chapter 2 (algorithm analysis), section 4.1 (introduction to trees), and sections 6.1-6.4 (priority queues and binary heaps)