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CSE 326: Data Structures
Asymptotic Analysis

Hannah Tang and Brian Tjaden
Summer Quarter 2002

Today’s Outline
• How’s the project going?
• Finish up stacks, queues, lists, and bears, oh my!
• Math review and runtime analysis
• Pretty pictures
• Asymptotic analysis

Analyzing Algorithms: Why Bother?

From “Programming Pearls”, by Jon Bentley
Communications of the ACM , Nov 1984

Analyzing Algorithms
• Computer scientists analyze algorithms to precisely 

characterize an algorithm’s:
– Time complexity (running time)
– Space complexity (memory use)

• This allows us to get a better sense of the various tradeoffs 
between several algorithms
– For instance, do we know how complex the 1984 algorithm is, 

compared to the 1945 algorithm?

A problem’s input size is indicated by a number n
– Sometimes have multiple inputs, e.g. m and n

• The running time of an algorithm is a function of n
– n,      2n,      n log n,  18 + 3n(log n2) + 5n3

Hannah Takes a Break
bool ArrayFind(int array[],

int n,
int key )

{
// Insert your algorithm 
here

}

2 3 5 16 37 50 73 75 126

What algorithm would you choose 
to implement this code snippet?

Hannah Takes a Break: 
Simplifying assumptions

• Ideal single-processor machine (serialized 
operations)

• “Standard” instruction set (load, add, store, etc.)
• All operations take 1 time unit (including, for our 

purposes, each Java or C++ statement
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HTaB: Analyzing Code

Basic Java/C++ operations
Consecutive statements

Conditionals
Loops

Function calls
Recursive functions

Constant time
Sum of times
Larger branch plus test
Sum of iterations
Cost of function body
Solve recurrence relation

HTaB: Linear Search Analysis
bool ArrayFind( int array[],

int n, 
int key )

{

for( int i = 0; i < n; i++ )
{

// Found it!
if( array[i] == key )

return true;
}
return false;

}

• Exact Runtime:

• Best Case:

• Worst Case:

HTaB: Binary Search Analysis
bool ArrayFind( int array[], int s,

int e, int key ) {
// The subarray is empty
if( e – s <= 0 )

return false;

// Search this subarray
int mid = (e - s) / 2;
if( array[key] == array[mid] ) {

return true;
} else if( key < array[mid] ) {

return ArrayFind( array, s, 
mid, key );

} else {
return ArrayFind( array, mid,

e, key );
}

• Exact Runtime:

• Best case:

• Worst case:

Back to work: 
Solving Recurrence Relations

1. Determine the recurrence relation.  What are the base case(s)?

2. “Expand” the original relation to find an equivalent general 
expression in terms of the number of expansions.

3. Find a closed-form expression by setting the number of 
expansions to a value which reduces the problem to a base case

Linear Search vs Binary Search

Worst Case

Best Case

Exact Runtime

Binary SearchLinear Search

So … which algorithm is best?
What the tradeoffs did you make?

Fast Computer vs. Slow Computer
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Fast Computer vs. Smart Programmer 
(round 1)

Fast Computer vs. Smart Programmer 
(round 2)

Asymptotic Analysis
• Asymptotic analysis looks at the order of the 

running time of the algorithm
– A valuable tool when the input gets “large”
– Ignores the effects of different machines or different 

implementations of the same algorithm

• Intuitively, to find the asymptotic runtime, throw 
away the constants and low-order terms
– Linear search is T( n) = n ∈ O(n)
– Binary search is T( n) = T(n) = 4 log2n + 1 ∈ O(log n)

Remember: the fastest algorithm has the 
slowest growing function for its runtime

Order Notation: Intuition

Although not yet apparent, as n gets “sufficiently 
large”, f(n) will be “greater than or equal to” g(n)

f(n) = n3 + 2n2

g(n) = 100n2 + 1000

Order Notation: Definition
O( f(n) ) is a set of functions

g(n) ∈ O( f(n) ) iff 
There exist c and n0 such that g(n) ≤ c f(n)
for all n ≥ n0

Example:
100n2 + 1000 ≤ 5 (n3 + 2n2) for all n ≥ 19
So g(n) ∈ O( f(n) )

Sometimes, you’ ll see the notation g(n) = O(f(n)).  This equivalent 
to g(n) ∈ O(f(n)).  However, the notation O(f( n)) = g(n) is not 
correct

Order Notation: Example

100n2 + 1000 ≤ 5 (n3 + 2n2) for all n ≥ 19

So g(n) ∈ O( f(n) )
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Oops: Set Notation

1.001
n + 3 n2

O( n3 )

45697 n 3- 4n
2n2 + 10

100n2 log n

“O( f(n) ) is a set 
of functions”

So we say both 
100n2 log n = O( n3 )  and  

100n2 log n ∈ O( n3 ) 

Set Notation

1.001n + 3 n2O( n3 )

45697 n 3- 4n2n2 + 10

100n2 log n

O( 2n )
1.5n - 100

2n + n 1000 6n log n2

Set notation allows us to 
formalize our intuition

O( n3 ) ⊂ O( 2n )

Big-O Common Names
constant: O(1)

logarithmic: O(log n) 
linear: O(n)

log-linear: O(n log n)
superlinear: O(n1+c) (c is a constant, where 0 < c < 1)

quadratic: O(n2)
polynomial: O(nk) (k is a constant)

exponential: O(cn) (c is a constant > 1)

Meet the Family
• O( f(n) ) is the set of all functions asymptotically 

less than or equal to f(n)
– o( f(n) ) is the set of all functions asymptotically 

strictly less than f(n)

• Ω( f(n) ) is the set of all functions asymptotically 
greater than or equal to f(n)
– ω( f(n) ) is the set of all functions asymptotically 

strictly greater than f(n)

• θ( f(n) ) is the set of all functions asymptotically 
equal to f(n)

Meet the Family Formally 
(don’t worry about dressing up)

• g(n) ∈ O( f(n) ) iff 
There exist c and n0 such that g(n) ≤ c f(n) for all n ≥ n0

– g(n) ∈ o( f(n) ) iff 
There exists a n0 such that g(n) < c f(n) for all c and n ≥ n0

• g(n) ∈ Ω( f(n) ) iff
There exist c and n0 such that g(n) ≥ c f(n) for all n ≥ n0
– g(n) ∈ ω( f(n) ) iff

There exists a n0 such that g(n) > c f(n) for all c and n ≥ n0

• g(n) ∈ θ( f(n) ) iff
g(n) ∈ O( f(n) ) and g(n) ∈ Ω( f(n) )

Big-Omega et al. Intuitively

>ω

<o

=θ

≥Ω

≤O

Mathematics RelationAsymptotic Notation
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True or False?

n3 + 4 ∈ ω(n2)

n3 + 4 ∈ o(n4)

n log n ∈ Ω(n)

n log n ∈ O(2n)

10-10 n2 ∈ θ(n2)

10,000 n2 + 25n ∈ θ(n2)  

Another Kind of Analysis
• Runtime may depend on actual input , not just 

length of input
• Analysis based on input type:

– Worst case
• Your worst enemy is choosing input

– Average case
• Assume a probability distribution of inputs

– Best case 
• Not too useful

• Amortized analysis
• Runtime over many runs, regardless of underlying probability 

for inputs

HTaB: Pros and Cons of 
Asymptotic Analysis To Do

• Start project 1 
– Due Monday, July 1 st at 10 PM sharp!

• Sign up for 326 mailing list(s)
– Don’t forget to use the new web interfaces!

• Prepare for tomorrow’s quiz
– Possible topics:

• Math concepts from 321 (skim section 1.2 in Weiss)
• Lists, stacks, queues, and the tradeoffs between various 

implementations
• Whatever asymptotic analysis stuff we covered today
• Possible middle names for Brian C. Tjaden, Hannah C. Tang, and 

Albert J. Wong

• Read chapter 2 (algorithm analysis), section 4.1 
(introduction to trees), and sections 6.1 -6.4 (priority 
queues and binary heaps)


