CSE 326: Data Structures
Worst Case, Average Case, and In-Between

Hannah Tang and Brian Tjaden
Summer Quarter 2002

Today’s Outline

* Review of probability
Motivation for randomization
» Two randomized data structures
— Treaps
— Randomized Skip Lists
» Two randomized algorithms
— Primality checking

— Graph searching
* Agan?

The Problem with
Deterministic Data Structures

We've seen many data structures with good average case
performance on random inputs, but bad behavior on
particular inputs

We define the worst caseruntime over all possible
inputs | of sizenas:
Worst-case T(n) =max T(I)
|

We define theaverage caseruntime over all possible
inputs | of sizenas:

Average-caseT(n) = (IST(I)) / numPossl nputs

The Motivation for Randomization

Instead of randomizing the input (sSihcewe
cannot!), consider randomizing the data
structure
— No bad inputs, just unlucky random numbers
— Expected case good behavior on any input

Expectant Cases
Definition:
— A worst-case expected time analysisis aweighted sum of all
possi ble outcomes over some probability distribution

Thus, the expected runtime of arandomized data structure on some
inputlis:

Expected T(1) = SS(Pr(9* T(1,S))

And the wor st-case expected runtime of arandomized data
structure* is:

Expected T(n) = max (S(Pr(S)* T(1, S)))
1 s
* Randomized data structure = = adata

structure whose behaviour is dependant
on asequence of random numbers

What' s the Difference?

» Randomized with good expected time

— Onceinawhileyou will have an expensive operation, but
no inputs can make this happen all thetime

« Deterministic with good average time

— If your application happensto always use the “bad” case,
you are inbigtrouble!

» Expected timeis kind of @
like an insurance policy
for your algorithm! A"Stﬂte

Yiurme in good Bands

Does Randomization Work?

* Not-really randomized datastructures
— Splay Trees (compare with AVL trees)
— Skew Heaps (compare with Leftist heaps)
— Others?
» Randomized datastructures
— Universal Hashing hash table
« Also Perfect Hashing hash table
— Others?

Treap Data Structure for the
Dictionary ADT
Treaps: ; search treein blue

— Havethe binary tree
structure property

— Havethe BST order ﬂ
property
— Havethe heaporder
property with
% 8o/

randomly assigned
priorities

Treap Insert
» Choose arandom priority
e Insert asin norma BST
 Rotate up until heap order isrestored
(maintaining BST property while rotating)
insert(15)

Tree + Heap... Why Bother?

Insert datain sorted order into atregp; what
shapetree comes out?

insert(7) insert(8) insert(9) insert(12)

Treap Delete
Find the key
Increaseits priorityto ¥
Rotate it to the fringe
Snip it off

del etef @
7

It

Otmimmafyht

ot rommmmlt 3
3
7 5
o © 0
8
8§ 12 15 15
= kY

Treap Delete, cont.

SI

rotate right

Treap Summary

Implements Dictionary ADT
— Insert in expected O(log n) time
— Deletein expected O(log n) time
— Find in expected O(log n) time
— But worst case O(n)
Memory use
— O(1) per node
— About the cost of AVL trees
Very simple to implement, littleoverhead
— Lessthan AVL trees

Perfect Binary Skip List

* Sorted linked list
« #of links of anodeisitsheight

« The heighti link of each node (that has one)
links to the next node of heighti or greater

Find() in aPerfect Binary Skip List

» Starti at the maximum height
« Until the nodeisfound,or i =1 and the next
nodeistoo large:

— If the next node along thei link isless than the
target, traverseto the next node

— Otherwise, decrease i by one

Runtime?

Insert() in a Perfect Binary Skip List

Runtime?

Randomized Skip List Intuition
¢ It'sfartoo hard to insert into a perfect skip list
* But is perfection necessary?
What mattersin askip list?

— Wewant way fewer tall nodes than short ones

— Make good progress through the list with each high
traverse

Randomized Skip List

* Sorted linked list
o #of links of anodeisits height

* Theheighti link of each node (that has one) links
to the next node of height i or greater

¢ There should be about 1/2 as many height i+1
nodes as height i nod

N > > [>

Find() inaRSL

Start i at the maximum height

Until the nodeisfound or i is one and the next
node istoo large:

— If the next node along thei link islessthan the target,
traverse to the next node

— Otherwise, decreasei by one
Same as for a perfect skip list!

Runtime?

Insert() inaRSL

Flip acoin until it comes up heads

— Thiswill takei flips. Make the new node’sheight i .
Do afind, remembering nodes where we moved
down one link

Add the new node at the spot where the find ends
Point al the nodes where we moved down (up to
the new node' s height) at the new node

Point the new node' s links where those redirected
pointers were pointing

RSL Insert Example

insert(22)

with 3flips

Runtime?

Iteration and1D Range Queries

« Iteration: successively return (in order) each
element in the structure
— Start at beginning, walk list to end
— Just likealinked list!

» Range query: search for everything that falls
between two values
— Find() start point
— Walk through skip list using the lowest links
— Output each node until the end point

Runtimes?

Randomized Skip List
Summary

Implements Dictionary ADT
— Insert in expected O(log n)

— Find in expected O(log n)

— But worst case O(n)

Memory use
— O(1) memory per node
— About doublealinked list

Less overhead than search trees for iteration over
range queries

Intermission: Efficiently Calculating Powers

« How would you implement a function/method
pow(X, n) whichreturnsthe number x"?

» How could you do that efficiently?

Primality Checking

* Given anumber P, can we determine whether or notP
is prime?

Date: Wed, 7 Aug 2002 11:00: 43 - 0700 (PDT)
Newsgroups: uw- cs. ugrads. openf orum
Subject: Primes in P??

So, a paper published yeterday all eges they have found
a determnistic polynonial algorithmto determ ne
primality.

http://ww. cse.iitk.ac.in/prinmality.pdf

Two Properties of Primes
Pisaprime0 < A < Pand0 < X < P

Then:
APl =1 (mod P)

And, theonly solutionsto X2 = 1 (nod P) are:
X=1andX =P - 1

Checking Primality - First Attempt

aToPM nusl =

pow(someNunber, p-1): int pow(int a, int n) {

if(aToPM nusl %p == 1) if (n =:0)-
return true; » return 1;
if(n==1)

el se
return a;

return fal se;
int x = pow a, n/2);

if(isEven(n))
return x * x;

el se
return x * x * a

Using More Information

“And, theonlysolutionstoX? = 1 (nod P) are:
X=1landX =P - 1"

Checking Primality - Second Attempt

int powint a int n, int p) {
if (n==0)
return 1;
if (n==12
return a;

int x = pow(a, n/2, p);

int squared = x * x %p;
if(squared == 1 & & x is neither p-1 or 1)
/Il pisnt prine!

if(isEven(n))
return x * Xx;

el se
return x * x * a;

Checking Primality

Systematic algorithm:
Foral Asuchthat 0O<A <P
Calculate AR mod P using pow()
Check at each step of pow() and at end for primality conditions

Randomized algorithm:
Randomly pick an A and calculate AP mod P usingpow()

If pow() tells usthat P is prime, will either algorithm
tell us conclusively that P really is prime?

Randomized Primality Check

If the randomized algorithm reportsfailure, then Preally isn't prime.

If the randomized algorithm reports success, then Pmight be prime.
— Pisprimewith probability > ¥
— Each new A hasindependent probability of false positive

» Solution:

— Run the randomized algorithm several times

Evaluating Randomized Primality Testing

Y our probability of being struck by lightning this year:
0.00004%

Y our probability that anumber that tests prime 11 timesin
arow isactually not prime: 0.00003%

Y our probability of winning alottery of 1 million people
fivetimesinarow: 1in 210

Y our probability that a number that tests prime 50 timesin
arow isactualy not prime: 1 in 2100

Randomized Graph Searching

Consider some really huge graphs... o
— All citiesand townsin the World Atlas

— All starsin the Galaxy

— All ways 10 blocks can be stacked
Huh???

Implicitly Generated Graphs

« A huge graph may beimplicitly specified by rules
for generating it onthe-fly

« Blocksworld:

— vertex = relative positions of all blocks
— edge = robot arm stacks one block

The Blocks World Problem:
A Large Branching Factor

Source =initial state of the blocks
Goal = desired state of the blocks
Path source to goal = sequence of actions (program) for robot arm!
n blocks»n" vertices
— 10 blocks » 10 billion verticed
We cannot search such huge graphs exhaustively!

— Breadthfirst search: If out-degree of each nodeiis 10, potentially visits 10¢
vertices

— Dijkstra' s algorithm is basically breadth-first search (modified to handle
edgeweights)

Review: Heuristic-Based Searching

* The Manhattan distance (D x+ Dy) isan estimate of
the distance to the goal

— A heuristic value

¢ Best-First Search

— Select nodes to minimize estimated distance to the goal ; if a
promising set of nodes doesn’t pan out, backtrack

 Hill-climbing

— Select nodes to minimize estimated distance to the goal

— Says nothing about backtracking. Infact, we don’'t even keep
track of our previous path!

“Hill Climbing”: What’s in a Name?

 Let’sassumewe retrying tomaximizeour
heuristic

« |f weview our graph asaterrain, and the
heuristic values as elevations, then graph
searching becomes aproblem of finding the
tallest hill

e But...

— What are some problems with hill climbing?

Solution: Hill Climbing with Random Restarts®

« Onceyou can't go any farther, randomly
choose anodein the graph, and try again.

« Onceyou have several possible solutions, pick
theonewith the highest heuristic value

« A common variation issimulated annealing,
which may pick arandom moveinstead of the
best move. Asthe agorithm progresses, we
choose the random move less and less often

Example: N-Queens Problem

Place N queenson an N by N
chessboard so that no two queens
can attack each other

Graph search formulation:

— Eachway of placing fromOtoN

— Edge between vertices that differ by
adding or removing one queen

— Start vertex: empty board

— Goal vertex: any onewith N non+
attacking queens (there are many
such goals)

Hill Climbing with Random Restarts — Complexity?

« Can often prove that if you run long enough will
reach agoal state— but may take exponential time

* In some cases can prove that ahill-climbing or
random walk algorithm will find agoa in
polynomial timewith high probability
— eg., 2-SAT, Papadimitriou 1997

» Widely used for real-world problems where actual
complexity is unknown— scheduling, optimization

— N-Queens— probably polynomial, but no one hastried to
prove formal bound

Other Red -World Applications

* Routing finding— computer networks, airline
route planning

¢ VLS| layout— cell layout and channel routing

¢ Production planning —"just in time” optimization

« Protein sequence aignment

¢ Travelling Salesman

¢ Many other “NP-Hard” problems

— A class of problems for which no exact polynomial
time algorithms exist— so heuristic search is the best
we can hope for

Other Randomized
Algorithms/Data Structures

Data Structures

— Other Dictionary ADT's

Algorithms

— Find aminimum spanning treein O(E) time
— Max flow problemsin O(V2 log V) time

« INnCSE 421, you'll see adeterministic algorithm
worksinO(V E?) time

— Many others!

