
1

CSE 326: Data Structures
Worst Case, Average Case, and In-Between

Hannah Tang and Brian Tjaden
Summer Quarter 2002

Today’s Outline

• Review of probability
• Motivation for randomization
• Two randomized data structures

– Treaps
– Randomized Skip Lists

• Two randomized algorithms
– Primality checking
– Graph searching

• Again?!

The Problem with
Deterministic Data Structures

We’ve seen many data structures with good average case
performance on random inputs, but bad behavior on
particular inputs

We define the average case runtime over all possible
inputs I of size n as:

Average-case T(n) = (ST(I)) / numPossInputs
I

We define the worst case runtime over all possible
inputs I of size n as:

Worst-case T(n) = max T(I)
I

The Motivation for Randomization

Instead of randomizing the input (since we
cannot!), consider randomizing the data
structure
– No bad inputs, just unlucky random numbers
– Expected case good behavior on any input

Expectant Cases
Definition:

– A worst-case expected time analysis is a weighted sum of all
possible outcomes over some probability distribution

Thus, the expected runtime of a randomized data structure on some
input I is:

Expected T(I) = S(Pr(S) * T(I, S))
S

* Randomized data structure = = a data
structure whose behaviour is dependant

on a sequence of random numbers

And the worst-case expected runtime of a randomized data
structure* is:

Expected T(n) = max (S(Pr(S) * T(I, S)))
I S

What’s the Difference?
• Randomized with good expected time

– Once in a while you will have an expensive operation, but
no inputs can make this happen all the time

• Deterministic with good average time
– If your application happens to always use the “bad” case,

you are in big trouble!

• Expected time is kind of
like an insurance policy
for your algorithm!

2

Does Randomization Work?
• Not-really randomized data structures

– Splay Trees (compare with AVL trees)
– Skew Heaps (compare with Leftist heaps)
– Others?

• Randomized data structures
– Universal Hashing hash table

• Also Perfect Hashing hash table

– Others?

Treap Data Structure for the
Dictionary ADT

Treaps:
– Have the binary tree

structure property
– Have the BST order

property
– Have the heap order

property with
randomly assigned
priorities

15
12

10
30

9
15

7
8

4
18

6
7

2
9

heap in yellow; search tree in blue

priority
key

Legend:

Treap Insert
• Choose a random priority
• Insert as in normal BST
• Rotate up until heap order is restored

(maintaining BST property while rotating)
insert(15)

6
7

7
8

2
9

14
12

6
7

7
8

2
9

14
12

9
15

6
7

7
8

2
9

9
15

14
12

Tree + Heap… Why Bother?

Insert data in sorted order into a treap; what
shape tree comes out?

6
7

insert(7)

6
7

insert(8)

7
8

6
7

insert(9)

7
8

2
9

6
7

insert(12)

7
8

2
9

15
12

priority
key

Legend:

Treap Delete
• Find the key
• Increase its priority to ∞
• Rotate it to the fringe
• Snip it off

delete(9)

6
7

7
8

2⇒∞
9

9
15

15
12

7
8

6
7

∞
9

9
15

15
12

rotate left
7
8

6
7

∞
9

9
1515

12

rotate left rotate right

Treap Delete, cont.

7
8

6
7

∞
9

9
1515

12

rotate right

7
8

6
7

∞
9

9
15

15
12

rotate right

7
8

6
7

∞
9

9
15

15
12

snip!

3

Treap Summary
Implements Dictionary ADT

– Insert in expected O(log n) time

– Delete in expected O(log n) time

– Find in expected O(log n) time
– But worst case O(n)

Memory use
– O(1) per node

– About the cost of AVL trees

Very simple to implement, little overhead
– Less than AVL trees

Perfect Binary Skip List

• Sorted linked list
• # of links of a node is its height
• The height i link of each node (that has one)

links to the next node of height i or greater

8

2

11

10

1913 20

22

2923

Find() in a Perfect Binary Skip List

• Start i at the maximum height
• Until the node is found,or i =1 and the next

node is too large:
– If the next node along the i link is less than the

target, traverse to the next node
– Otherwise, decrease i by one

Runtime?

Insert() in a Perfect Binary Skip List

Runtime?

Randomized Skip List Intuition

• It’s far too hard to insert into a perfect skip list

• But is perfection necessary?

• What matters in a skip list?
– We want way fewer tall nodes than short ones
– Make good progress through the list with each high

traverse

Randomized Skip List
• Sorted linked list
• # of links of a node is its height
• The height i link of each node (that has one) links

to the next node of height i or greater
• There should be about 1/2 as many height i+1

nodes as height i nodes

2 19 23

8

13

292010

22

11

4

Find() in a RSL

• Start i at the maximum height
• Until the node is found or i is one and the next

node is too large:
– If the next node along the i link is less than the target,

traverse to the next node
– Otherwise, decrease i by one

Same as for a perfect skip list!

Runtime?

Insert() in a RSL

• Flip a coin until it comes up heads
– This will take i flips. Make the new node’s height i .

• Do a find, remembering nodes where we moved
down one link

• Add the new node at the spot where the find ends
• Point all the nodes where we moved down (up to

the new node’s height) at the new node
• Point the new node’s links where those redirected

pointers were pointing

RSL Insert Example

2 19 23

8

13

292010 11

insert(22)
with 3 flips

2 19 23

8

13

292010

22

11

Runtime?

Iteration and1D Range Queries
• Iteration: successively return (in order) each

element in the structure
– Start at beginning, walk list to end
– Just like a linked list!

• Range query: search for everything that falls
between two values
– Find() start point
– Walk through skip list using the lowest links
– Output each node until the end point

Runtimes?

Randomized Skip List
Summary

• Implements Dictionary ADT
– Insert in expected O(log n)
– Find in expected O(log n)
– But worst case O(n)

• Memory use
– O(1) memory per node
– About double a linked list

• Less overhead than search trees for iteration over
range queries

Intermission: Efficiently Calculating Powers

• How would you implement a function/method
pow(x, n) which returns the number xn?

• How could you do that efficiently?

5

Primality Checking

• Given a number P, can we determine whether or not P
is prime?

Date: Wed, 7 Aug 2002 11:00:43 -0700 (PDT)
Newsgroups: uw-cs.ugrads.openforum
Subject: Primes in P??

So, a paper published yeterday alleges they have found
a deterministic polynomial algorithm to determine
primality.

http://www.cse.iitk.ac.in/primality.pdf

Two Properties of Primes

P is a prime 0 < A < P and 0 < X < P

Then:
AP-1 = 1 (mod P)

And, the only solutions to X2 = 1 (mod P) are:

X = 1 and X = P - 1

Checking Primality - First Attempt
aToPMinus1 =

pow(someNumber, p-1);
if(aToPMinus1 % p == 1)

return true;
else

return false;

int pow(int a, int n) {
if (n == 0)

return 1;
if(n == 1)

return a;

int x = pow(a, n/2);

if(isEven(n))
return x * x;

else
return x * x * a;

}

Using More Information

“And, the only solutions to X2 = 1 (mod P) are:
X = 1 and X = P - 1”

Checking Primality - Second Attempt
int pow(int a, int n, int p) {

if (n == 0)
return 1;

if (n == 1)
return a;

int x = pow(a, n/2, p);

int squared = x * x % p;
if(squared == 1 && x is neither p-1 or 1)

// p isn’t prime!

if(isEven(n))
return x * x;

else
return x * x * a;

Checking Primality
Systematic algorithm:

For all A such that 0 < A < P
Calculate AP-1 mod P using pow()
Check at each step of pow() and at end for primality conditions

Randomized algorithm:
Randomly pick an A and calculate AP-1 mod P using pow()

If pow() tells us that P is prime, will either algorithm
tell us conclusively that P really is prime?

6

Randomized Primality Check

If the randomized algorithm reports failure, then P really isn’t prime.

If the randomized algorithm reports success, then P might be prime.
– P is prime with probability > ¾
– Each new A has independent probability of false positive

• Solution:
– Run the randomized algorithm several times

Evaluating Randomized Primality Testing

Your probability of being struck by lightning this year:
0.00004%

Your probability that a number that tests prime 11 times in
a row is actually not prime: 0.00003%

Your probability of winning a lottery of 1 million people
five times in a row: 1 in 2100

Your probability that a number that tests prime 50 times in
a row is actually not prime: 1 in 2100

Randomized Graph Searching

Consider some really huge graphs…
– All cities and towns in the World Atlas

– All stars in the Galaxy
– All ways 10 blocks can be stacked

Huh???

Implicitly Generated Graphs
• A huge graph may be implicitly specified by rules

for generating it on-the-fly
• Blocks world:

– vertex = relative positions of all blocks
– edge = robot arm stacks one block

stack(blue,red)

stack(green,red)

stack(green,blue)
stack(blue,table)

stack(green,blue)

The Blocks World Problem:
A Large Branching Factor

• Source = initial state of the blocks
• Goal = desired state of the blocks

• Path source to goal = sequence of actions (program) for robot arm!
• n blocks ≈nn vertices

– 10 blocks ≈ 10 billion vertices!

• We cannot search such huge graphs exhaustively!
– Breadth-first search: If out-degree of each node is 10, potentially visits 10d

vertices
– Dijkstra’s algorithm is basically breadth-first search (modified to handle

edge weights)

Review: Heuristic-Based Searching
• The Manhattan distance (∆ x+ ∆ y) is an estimate of

the distance to the goal
– A heuristic value

• Best-First Search
– Select nodes to minimize estimated distance to the goal ; if a

promising set of nodes doesn’t pan out, backtrack

• Hill-climbing
– Select nodes to minimize estimated distance to the goal
– Says nothing about backtracking. In fact, we don’t even keep

track of our previous path!

7

“Hill Climbing”: What’s in a Name?

• Let’s assume we’re trying to maximize our
heuristic

• If we view our graph as a terrain, and the
heuristic values as elevations, then graph
searching becomes a problem of finding the
tallest hill

• But …
– What are some problems with hill climbing?

Solution: Hill Climbing with Random Restarts*

• Once you can’t go any farther, randomly
choose a node in the graph, and try again.

• Once you have several possible solutions, pick
the one with the highest heuristic value

• A common variation is simulated annealing,
which may pick a random move instead of the
best move. As the algorithm progresses, we
choose the random move less and less often

Example: N-Queens Problem
• Place N queens on an N by N

chessboard so that no two queens
can attack each other

• Graph search formulation:
– Each way of placing from 0 to N

queens on the chessboard is a vertex
– Edge between vertices that differ by

adding or removing one queen
– Start vertex: empty board
– Goal vertex: any one with N non-

attacking queens (there are many
such goals)

Hill Climbing with Random Restarts – Complexity?

• Can often prove that if you run long enough will
reach a goal state – but may take exponentialtime

• In some cases can prove that a hill-climbing or
random walk algorithm will find a goal in
polynomial time with high probability
– e.g., 2-SAT, Papadimitriou 1997

• Widely used for real-world problems where actual
complexity is unknown – scheduling, optimization
– N-Queens – probably polynomial, but no one has tried to

prove formal bound

Other Real-World Applications
• Routing finding – computer networks, airline

route planning
• VLSI layout – cell layout and channel routing
• Production planning – “just in time” optimization
• Protein sequence alignment
• Travelling Salesman
• Many other “NP -Hard” problems

– A class of problems for which no exact polynomial
time algorithms exist – so heuristic search is the best
we can hope for

Other Randomized
Algorithms/Data Structures

• Data Structures
– Other Dictionary ADT’s

• Algorithms
– Find a minimum spanning tree in O(E) time
– Max flow problems in O(V2 log V) time

• In CSE 421, you’ll see a deterministic algorithm
works in O(V E2) time

– Many others!

