
1

CSE 326: Data Structures
Seeing the forest for the trees

Hannah Tang and Brian Tjaden

Summer Quarter 2002

Today’s Outline - kd trees

Too much light often blinds gentlemen of this sort,

They cannot see the forest for the trees.

- Christoph Martin Wieland

What’s the goal for this course?
It is not possible for one to teach others, until one can first teach herself - Confucious

Data Structures - what’s in a name?

• Stacks and Queues

• Priority Queues
– Binary heap, Leftist heap, Skew heap, d - heap

• Trees
– Binary search tree, AVL tree, Splay tree, B tree

• Hash Tables
– Open and closed hashing, extendible, perfect,

and universal hashing

• Disjoint Sets

• Graphs
– Topological sort, shortest path algorithms,

Dijkstra’s algorithm, minimum spanning trees
(Prim’s algorithm and Kruskal’s algorithm)

Shakespeare

• Asymptotic analysis

• Sorting

– Comparison based sorting, lower-
bound on sorting, radix sorting

• World Wide Web

• Implement if you had to

• Understand trade-offs between
various data structures/algorithms

• Know when to use and when not to
use

• Real world applications

Range Query

A range query is a search in a dictionary in which
the exact key may not be entirely specified.

Range queries are the primary interface

with multi-D data structures.

Remember Assignment #2? Give an algorithm that takes a binary
search tree as input along with 2 keys, x and y, with x���y, and

prints all keys z in the tree such that x���z���y.

Range Query Example

Seattle

Bellingham

Tacoma

Olympia

Pullman

Spokane

Walla Walla

Yakima

X

Y

2

x

Range Querying in 1-D
Find everything in the rectangle…

x

Range Querying in 1-D with a BST
Find everything in the rectangle…

Multi-Dimensional Search ADT

• Dictionary operations
– find

– insert

– delete

– range queries

• Each item has k keys for a k-dimensional search tree

• Searches can be performed on one, some, or all the
keys or on ranges of the keys

9,13,64,2

5,78,21,94,4

8,42,5

5,2

Applications of Multi-D Search

• Astronomy (simulation of galaxies) - 3 dimensions

• Protein folding in molecular biology - 3 dimensions

• Lossy data compression - 4 to 64 dimensions

• Image processing - 2 dimensions

• Graphics - 2 or 3 dimensions

• Animation - 3 to 4 dimensions

• Geographical databases - 2 or 3 dimensions

• Web searching - 200 or more dimensions

k-D Trees can be unbalanced
(but not when built in batch!)

insert(<5,0>)

insert(<6,9>)

insert(<9,3>)

insert(<6,5>)

insert(<7,7>)

insert(<8,6>)

6,9

5,0

6,5

9,3

8,6

7,7

height:

Find in a k-D Tree
find(<x1,x2, …, xk>, root) finds the node

which has the given set of keys in it or returns
null if there is no such node

Node find(keyVector keys, Node root) {

 int dim = root.getDimension();

 if (root == NULL)

 return root;

 else if (root.getKeys() == keys)

 return root;

 else if (keys[dim] < (root.getKeys())[dim])

 return find(keys, root.getLeft());

 else

 return find(keys, root.getRight());

}

runtime:

3

Find Example
find(<3,6>)
find(<0,10>)

5,78,21,94,4

8,42,5

5,2

9,13,64,2

Range Query Examples:
Two Dimensions

• Search for items based on
just one key

• Search for items based on
ranges for all keys

• Search for items based on
a function of several keys:
e.g., a circular range
query

k-D Trees

• Split on the next dimension at each succeeding level

• If building in batch, choose the median along the
current dimension at each level
– guarantees logarithmic height and balanced tree

• In general, add as in a BST

k-D tree node

dimension

left right

keys value The dimension that
this node splits on

x

Building a 2-D Tree (0/4)
y

x

Building a 2-D Tree (1/4)
y

x

y

Building a 2-D Tree (2/4)

4

x

y

Building a 2-D Tree (3/4)

x

y

Building a 2-D Tree (4/4)

k-D Tree

a
c

i
h

m

d

e

f

b

j
k

g

l

ldkf

hg

e

cj i mb a x

y

2-D Tree

x

y

2-D Range Querying in 2-D Trees

Search every partition that intersects the rectangle.
Check whether each node (including leaves) falls into the range.

x

y

Other Shapes for Range Querying

Search every partition that intersects the shape (circle).
Check whether each node (including leaves) falls into the shape.

5

Quad Trees

• Split on all (two) dimensions at each level

• Split key space into equal size partitions (quadrants)

• Add a new node by adding to a leaf, and, if the leaf is
already occupied, split until only one node per leaf

quad tree node

Quadrants:

0,1 1,1

0,0 1,0

quadrant

0,01,00,11,1

keys value

Center

x yCenter:

x

Building a Quad Tree (0/5)
y

x

Building a Quad Tree (1/5)
y

x

Building a Quad Tree (2/5)
y

x

Building a Quad Tree (3/5)
y

x

Building a Quad Tree (4/5)
y

6

x

Building a Quad Tree (5/5)
y

Quad Tree Example

a

g

b

e
f

d

c
ga

fed

cb

Quad Trees can be unbalanced

b

a

height:

Quad Trees vs. k-D Trees

• k-D Trees
– Density balanced trees

– Number of nodes is O(n) where n is the number of points

– Height of the tree is O(log n) with batch insertion

– Supports insert, find, nearest neighbor, range queries

• Quad Trees
– Number of nodes is O(n(1+ log(∆/n))) where n is the number of

points and ∆ is the ratio of the width (or height) of the key
space and the smallest distance between two points

– Height of the tree is O(log n + log ∆)

– Supports insert, delete, find, nearest neighbor, range queries

