CSE 326: Data Structures Seeing the forest for the trees

Today's Outline - $k \mathrm{~d}$ trees

Too much light often blinds gentlemen of this sort, They cannot see the forest for the trees.

- Christoph Martin Wieland

Hannah Tang and Brian Tjaden
Summer Quarter 2002

What's the goal for this course?
It is not possible for one to teach others, until one can first teach herself - Confucious

Range Query

A range query is a search in a dictionary in which the exact key may not be entirely specified.

Range queries are the primary interface with multi-D data structures.

Remember Assignment \#2? Give an algorithm that takes a binary search tree as input along with 2 keys, x and y, with $x \leq y$, and prints all keys z in the tree such that $x \leq z \leq y$.

Range Query Example

Multi-Dimensional Search ADT

- Each item has k keys for a k-dimensional search tree
- Searches can be performed on one, some, or all the keys or on ranges of the keys

Applications of Multi-D Search

- Astronomy (simulation of galaxies) - 3 dimensions
- Protein folding in molecular biology - 3 dimensions
- Lossy data compression - 4 to 64 dimensions
- Image processing - 2 dimensions
- Graphics - 2 or 3 dimensions
- Animation - 3 to 4 dimensions
- Geographical databases - 2 or 3 dimensions
- Web searching - 200 or more dimensions

Find in a k-D Tree

find ($\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{k}}\right\rangle$, root) finds the node which has the given set of keys in it or returns null if there is no such node

Node find(keyVector keys, Node root) \{ int $\operatorname{dim}=$ root.getDimension();
if (root $==$ NULL)
return root;
else if (root.getKeys() == keys)
return root;
else if (keys [dim] < (root.getKeys()) [dim])
return find(keys, root.getLeft());
else
return find(keys, root.getRight())
\}
runtime:

k-D Trees

- Split on the next dimension at each succeeding level
- If building in batch, choose the median along the current dimension at each level
- guarantees logarithmic height and balanced tree
- In general, add as in a BST

Quad Trees

- Split on all (two) dimensions at each level
- Split key space into equal size partitions (quadrants)
- Add a new node by adding to a leaf, and, if the leaf is already occupied, split until only one node per leaf

quadrant	quad tree node	
$\mathbf{0 , 1}$	$\mathbf{1 , 1}$	
$\mathbf{0 , 0}$	$\mathbf{1 , 0}$	

Center

Quad Trees vs. k-D Trees

- k-D Trees
- Density balanced trees
- Number of nodes is $\mathrm{O}(\mathrm{n})$ where n is the number of points
- Height of the tree is $\mathrm{O}(\log \mathrm{n})$ with batch insertion
- Supports insert, find, nearest neighbor, range queries
- Quad Trees
- Number of nodes is $\mathrm{O}(\mathrm{n}(1+\log (\Delta / \mathrm{n})))$ where n is the number of points and Δ is the ratio of the width (or height) of the key space and the smallest distance between two points
- Height of the tree is $O(\log n+\log \Delta)$
- Supports insert, delete, find, nearest neighbor, range queries

