

We already showed this finds a spanning tree: That was part of our definition of a good maze.

Proof by contradiction that Kruskal's finds the minimum: Assume another spanning tree has *lower cost* than Kruskal's Pick an edge $\mathbf{e_1} = (\mathbf{u}, \mathbf{v})$ in that tree that's *not* in Kruskal's Kruskal's tree connects \mathbf{u} 's and \mathbf{v} 's sets with another edge $\mathbf{e_2}$ But, $\mathbf{e_2}$ must have at most the same cost as $\mathbf{e_1}$! So, swap $\mathbf{e_2}$ for $\mathbf{e_1}$ (at worst keeping the cost the same) Repeat until the tree is identical to Kruskal's: contradiction!

QED: Kruskal's algorithm finds a minimum spanning tree.

