
1

CSE 326: Data Structures
Minimum Spanning Trees

and
The Dynamic Duo (Prim and Kruskal)

Hannah Tang and Brian Tjaden
Summer Quarter 2002

Some Applications:
Moving Around Washington

What’s the fastest way from Seattle to Spokane?
Use Dijkstra’s Algorithm!

Some Applications:
Communication in Washington

What’s the cheapest inter-city network?

Spanning tree: a subset of the edges from a connected graph
that…
…touches all vertices in the graph (spans the graph)
…forms a tree (is connected and contains no cycles)

Minimum spanning tree: the spanning tree with the least total
edge cost.

Spanning Tree

4 7

1 5

9

2

Two Different Algorithms

Prim’s Algorithm
Almost identical to Dijkstra’s

Kruskals’s Algorithm
Completely different!

Prim’s Algorithm for
Minimum Spanning Trees

A node-oriented greedy algorithm (builds an MST
by greedily adding nodes)

Select a node to be the “root” and mark it as known
While there are unknown nodes left in the graph

Select the unknown node n with the smallest cost from
some known node m

Mark n as known
Add (m, n) to our MST

Runtime:

2

Prim’s Algorithm In Action

A

C

B

D

F H

G

E

2 2 3

2
1

4

10

8

1
94

2

7

Kruskal’s Algorithm for
Minimum Spanning Trees

An edge-oriented greedy algorithm (builds an MST
by greedily adding edges)

Initialize all vertices to unconnected
While there are still unmarked edges

Pick the lowest cost edge e = (u, v) and mark it

If u and v are not already connected, add e to the
minimum spanning tree and connect u and v

Sound familiar?
(Think maze generation.)

Kruskal’s Algorithm In Action

A

C

B

D

F H

G

E

2 2 3

2
1

4

10

8

1
94

2

7

Proof of Correctness

We already showed this finds a spanning tree:
That was part of our definition of a good maze.

Proof by contradiction that Kruskal’s finds the minimum:
Assume another spanning tree has lower cost than Kruskal’s
Pick an edge e1 = (u, v) in that tree that’s not in Kruskal’s
Kruskal’s tree connects u’ s and v’s sets with another edge e2
But, e2 must have at most the same cost as e1!
So, swap e2 for e1 (at worst keeping the cost the same)

Repeat until the tree is identical to Kruskal’s: contradiction!

QED: Kruskal’s algorithm finds a minimum spanning tree.

Data Structures
for Kruskal’s Algorithm

Pick the lowest cost edge…

findMin/deleteMin

If u and v are not already connected…
…connect u and v.

find representative

union

|E| times:

|E| times:

Runtime:

