

Spanning Tree

Spanning tree: a subset of the edges from a connected graph that...
...touches all vertices in the graph (spans the graph)

Minimum spanning tree: the spanning tree with the least total edge cost.

Two Different Algorithms

Prim's Algorithm Almost identical to Dijkstra's

Kruskals's Algorithm Completely different!

Prim's Algorithm for

 Minimum Spanning TreesA node-oriented greedy algorithm (builds an MST by greedily adding nodes)

Select a node to be the "root" and mark it as known While there are unknown nodes left in the graph

Select the unknown node n with the smallest cost from some known node m
Mark n as known
Add (m, n) to our MST
Runtime:

Prim's Algorithm In Action

Kruskal's Algorithm for Minimum Spanning Trees

An edge-oriented greedy algorithm (builds an MST by greedily adding edges)

Initialize all vertices to unconnected
While there are still unmarked edges
Pick the lowest cost edge $\mathbf{e}=(\mathbf{u}, \mathrm{v})$ and mark it
If \mathbf{u} and \mathbf{v} are not already connected, add \mathbf{e} to the minimum spanning tree and connect \mathbf{u} and \mathbf{v}

Sound familiar? (Think maze generation.)

Kruskal's Algorithm In Action

Proof of Correctness

We already showed this finds a spanning tree:
That was part of our definition of a good maze.
Proof by contradiction that Kruskal's finds the minimum: Assume another spanning tree has lower cost than Kruskal's Pick an edge $\mathbf{e}_{1}=(\mathbf{u}, \mathbf{v})$ in that tree that's not in Kruskal's Kruskal's tree connects \mathbf{u} 's and \mathbf{v} 's sets with another edge $\mathbf{e}_{\mathbf{2}}$
But, \mathbf{e}_{2} must have at most the same cost as \mathbf{e}_{1} !
So, swap \mathbf{e}_{2} for \mathbf{e}_{1} (at worst keeping the cost the same)
Repeat until the tree is identical to Kruskal's: contradiction!
QED: Kruskal's algorithm finds a minimum spanning tree.

