

Formally speaking ...
Given a graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$ and a vertex $\mathbf{s} \in \mathbf{V}$, find the shortest path from s to every vertex in \mathbf{v}

Many variations:

- Weighted vs. unweighted
- Cyclic vs. acyclic
- Positive weights only vs. negative weights allowed
- Multiple weight types to optimize
- Directed vs undirected graph

Formally speaking \ldots
Given a graph $\mathbf{G}=(\mathbf{v}, \mathbf{E})$ and a vertex $\mathbf{s} \in \mathbf{v}$,
find the shortest path from s to every vertex in \mathbf{v}
Many variations:
- Weighted vs. unweighted
- Cyclic vs. acyclic
- Positive weights only vs. negative weights allowed
- Multiple weight types to optimize
- Directed vs undirected graph

The Trouble with Negative Weighted Cycles

Dijkstra's vs BFS

Dijkstra Pseudocode

Initialize the cost of each node to ∞

Initialize the cost of the source to 0

While there are unknown nodes left in the graph Select the unknown node with the lowest cost: n Mark n as known
For each node a which is adjacent to n
a 's cost $=\min (a$'s old cost, n 's cost $+\operatorname{cost}$ of $(n, a))$

Dijkstra's Algorithm in Action

Dijkstra's Algorithm
 for Single Source, Shortest Path

- Classic algorithm for solving shortest path in weighted graphs without negative weights
- A greedy algorithm (irrevocably makes decisions without considering future consequences)
- Intuition:
- shortest path from source vertex to itself is 0
- cost of going to adjacent nodes is at most edge weights
- cheapest of these must be shortest path to that node
- update paths for new node and continue picking cheapest path

Inside the Cloud (Proof)

Prove by induction on \# of nodes in the cloud: Initial cloud is just the source with shortest path 0 Assume: Everything inside the cloud has the correct shortest path
Inductive step: Once we prove the shortest path to some node \boldsymbol{V} (which is not in the cloud) is correct, we add it to the cloud

Graphs are Really Important!

