

The (Graffitied) Bridges of Königsberg


The Bridges of Königsberg, Formally


- Each bridge is an edge
- Each part of town is a vertex
- Is there a path that crosses each edge exactly once?


## Graph... ADT?

Graphs are a formalism useful for representing relationships between things

- A graph $\mathbf{G}$ is represented as
$\mathbf{G}=(\mathrm{V}, \mathrm{E})$
- $\mathbf{v}$ is a set of vertices: $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathrm{n}}\right\}$
- E is a set of edges: $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, e_{m}\right\}$ where

each $e_{i}$ connects two vertices $\left(\mathbf{v}_{i 1}, \mathbf{v}_{\mathbf{i} 2}\right)$
- Operations include:
$\mathrm{V}=\{$ Han, Leia, Luke $\}$
- Iterating over vertices
$\mathrm{E}=\{($ Luke, Leia),
- Iterating overedges (Leia, Han)
- Iterating over vertices adjacent to a specific vertex (Leia, Han)\}
- Asking whether two vertices are connected via an edge


## Graph Definitions

In directed graphs, edges have a specific direction:


In undirected graphs, they don't (edges are two-way):


Vertices $\mathbf{u}$ and $\mathbf{v}$ are adjacent if ( $\mathbf{u}, \mathbf{v}) \in \mathbf{E}$

## More Definitions: Simple Paths and Cycles

A simple path repeats no vertices (except that the first can be the last):
p $=\{$ Seattle, Salt Lake City, San Francisco, Dallas $\}$
p $=\{$ Seattle, Salt Lake City, Dallas, San Francisco, Seattle $\}$

A cycle is a path that starts and ends at the same node: $p=\{$ Seattle, Salt Lake City, Dallas, San Francisco, Seattle $\}$

A simple cycle is a cycle that repeats no vertices except that the first vertex is also the last (in undirected graphs, no edge can be repeated)

## Trees as Graphs

- Every tree is a graph with some restrictions:
- The tree is directed
- There are no cycles (directed or undirected)
- There is a directed path from the root to every node


DAGs are directed graphs with no cycles.

If program call-graph is a $D A G$, then all procedure calls can be in-lined


Graph Representations

- List of vertices + list of edges

- 2-D matrix of vertices (marking edges in the cells) "adjacency matrix"
- List of vertices each with a list of adjacent vertices "adjacency list"


## Representation 1: Adjacency Matrix

A $|\mathbf{v}| \times|\mathbf{v}|$ array in which an element $(\mathbf{u}, \mathrm{v})$ is true if and only if there is an


runtime:
space requirements:


## Some Applications: Moving Around Washington



What's the fastest way from Seattle to Spokane?

Some Applications:
Communication in Washington


What's the cheapest inter-city network?

Some Applications: Reliability of Communication


If we lose Wenatchee, can Seattle still talk to Spokane?

| Some Applications: |
| :---: |
| Bus Routes in Downtown Seattle |
| If we're at $3^{\text {rd }}$ and Pine, can we get to $1^{\text {d }}$ and Union? |

Some Applications:
Orderings and Determining Dependancies


Partial Order: Taking a Break in Class


## Topo-Sort (Take One)

Label each vertex's in-degree (\# of inbound edges)
While there are vertices remaining
Pick a vertex with in-degree of zero and output it Reduce the in-degree of all vertices adjacent to it Remove it from the list of vertices

Runtime:

## Topo-Sort (Take Two)

Other Graph Applications?
Mazes == Graphs

- Cells are vertices
- Edges are doors from one cell to another



## Using BFS

How do we ...

- Determine if $G$ is connected?
- Find the distance from the root to a node?
- Determine if G has any cycles?
- Determine if G is a tree?
- Find a path from the root to a node?


## Graph Traversals

- Breadth-first search (and depth-first search) work for arbitrary (directed or undirected) graphs - not just mazes!
- Must mark visited vertices so you do not go into an infinite loop!
- Either can be used to determine connectivity:
- Is there a path between two given vertices?
- Is the graph (weakly) connected?
- Important difference: Breadth-first search always finds a shortest path from the start vertex to any other (for unweighted graphs)
- Depth first search may not!


