
1

CSE 326: Data Structures
Cool Graphs n’ Pretty Pictures

Hannah Tang and Brian Tjaden
Summer Quarter 2002

Famous Dead Guy

• Number theory
• Numerical Analysis
• Graph Theory

• See the History of
Mathematics biography on
Euler:
– http://www-gap.dcs.st-

and.ac.uk/~history/Mathematic
ians/Euler.html

Leonhard Euler 1707 -1783

The Bridges of Königsberg

Can we walk around Konigsberg, crossing each bridge exactly once?

The (Graffitied) Bridges of Königsberg

The Bridges of Königsberg, Formally

• Each bridge is an edge
• Each part of town is a

vertex
• Is there a path that crosses

each edge exactly once?

Graph… ADT?
Graphs are a formalism useful for representing

relationships between things
– A graph G is represented as
G = (V, E)
• V is a set of vertices: {v1, v2, …, vn}
• E is a set of edges: {e1, e2, …, em} where

each ei connects two vertices (vi1, vi2)

– Operations include:
• Iterating over vertices
• Iterating over edges
• Iterating over vertices adjacent to a specific vertex
• Asking whether two vertices are connected via an edge

Han

Leia

Luke

V = {Han, Leia, Luke}
E = {(Luke, Leia),

(Han, Leia),
(Leia, Han)}

2

Graph Definitions
In directed graphs, edges have a specific direction:

In undirected graphs, they don’t (edges are two-way):

Vertices u and v are adjacent if (u, v) ∈ E

Han

Leia

Luke

Han

Leia

Luke

More Definitions:
Simple Paths and Cycles

A simple path repeats no vertices (except that the first can
be the last):
p = {Seattle, Salt Lake City, San Francisco, Dallas}
p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}

A cycle is a path that starts and ends at the same node:
p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}

A simple cycle is a cycle that repeats no vertices except
that the first vertex is also the last (in undirected
graphs, no edge can be repeated)

Trees as Graphs

• Every tree is a graph
with some restrictions:
– The tree is directed
– There are no cycles

(directed or undirected)
– There is a directed path

from the root to every
node

A

B

D E

C

F

HG

JI

BAD!

Directed Acyclic Graphs (DAGs)

DAGs are directed
graphs with no
cycles.

Trees ⊂ DAGs ⊂ Graphs

main()

add()

access()

mult()

read()

If program call-graph is a
DAG, then all procedure
calls can be in -lined

Graph Representations
• List of vertices + list of edges

• 2-D matrix of vertices (marking edges in the cells)
“adjacency matrix”

• List of vertices each with a list of adjacent vertices
“adjacency list”

Han

Leia

Luke
Representation 1: Adjacency Matrix

A |V| x |V| array in which an element
(u, v) is true if and only if there is an
edge from u to v
Han

Leia

Luke

Han Luke Leia

Han

Luke

Leia

runtime: space requirements:

3

Representation 2: Adjacency List

A |V|-ary list (array) in which each entry
stores a list (linked list) of all adjacent
vertices
Han

Leia

Luke
Han

Luke

Leia

runtime: space requirements:

Some Applications:
Moving Around Washington

What’s the fastest way from Seattle to Spokane?

Some Applications:
Communication in Washington

What’s the cheapest inter-city network?

Some Applications:
Reliability of Communication

If we lose Wenatchee, can Seattle still talk to Spokane?

Some Applications:
Bus Routes in Downtown Seattle

If we’re at 3 rd and Pine, can we get to 1 st and Union?

Some Applications:
Orderings and Determining Dependancies

Okay, everybody, get up and stretch!

4

Total Ordering on Graphs
1

2
3

4
5

6
7

A B
means A must go before B

Does it make sense to define an
ordering on an undirected graph?

Partial Order: Taking a Break in Class

Okay, everybody, stand up and stretch!

Some Applications:
Topological Sort

Given a graph, G = (V, E), output all the vertices
in V such that no vertex is output before any other
vertex with an edge to it.

CSE 142 CSE 143

CSE 321

CSE 341

CSE 378

CSE 326

CSE 370

CSE 403

CSE 421

CSE 467

CSE 451

CSE 322

Topo-Sort (Take One)

Label each vertex’s in-degree (# of inbound edges)
While there are vertices remaining

Pick a vertex with in-degree of zero and output it
Reduce the in -degree of all vertices adjacent to it
Remove it from the list of vertices

Runtime:

Topo-Sort (Take Two)

Label each vertex’s in -degree
Initialize a queue to contain all in -degree zero vertices
While there are vertices remaining in the queue

Pick a vertex v with in-degree of zero and output it
Reduce the in-degree of all vertices adjacent to v
Put any of these with new in-degree zero on the queue
Remove v from the queue

Runtime:

Other Graph Applications?

5

Mazes == Graphs

• Cells are vertices
• Edges are doors from one cell to another

a b c

d e f

hg iihg

cba

fed = =

Breadth-First Search
BFS characteristics:

– Nodes being worked on maintained in a FIFO
Queue, not a stack (like DFS)

– Iterative style procedures sometimes easier to
design than recursive procedures
Put root in a Queue
Repeat until Queue is empty:

Dequeue a node
Process it
Add its children to queue

BFS, Graphically

Explore vertices in order of distance from start

More BFS pictures

Using BFS

How do we …
– Determine if G is connected?
– Find the distance from the root to a node?
– Determine if G has any cycles?
– Determine if G is a tree?
– Find a path from the root to a node?

Introducing the BFS tree

6

Graph Traversals
• Breadth-first search (and depth-first search) work for

arbitrary (directed or undirected) graphs - not just
mazes!
– Must mark visited vertices so you do not go into an infinite

loop!

• Either can be used to determine connectivity:
– Is there a path between two given vertices?
– Is the graph (weakly) connected?

• Important difference: Breadth-first search always finds
a shortest path from the start vertex to any other (for
unweighted graphs)
– Depth first search may not!

“Weakly connected”: A detour into connectivity

Undirected graphs are connected if there is a path between any two
vertices

Directed graphs are strongly connected if there is a path from any
one vertex to any other

Directed graphs are weakly connected if there is a path between any
two vertices, ignoring direction

A complete graph has an edge between every pair of vertices

