CSE 326: Data Structures
Sorting in (kind of) linear time

Hannah Tang and Brian Tjaden
Summer Quarter 2002

BinSort (a.k.a. BucketSort)

« If al keys are between 1 and K
¢ Havearray of sizeK
¢ Put keysinto correct bin (cell) of array

BinSort example
K=5. list=(5,1,3,4,3,2,1,1,5,4,5)

Binsin array
key=11(11,1
key=2 |2 Sorted list:

key =333 # 1,1,1,2,3,34,4,555
key=4 |44
key=5 |555

BinSort Running Time:

« K isaconstant

— BinSort islinear time
« Kisvariable

— Not simply linear time
» Kislarge (e.g. 2%?)

— Impractical

BinSort is “stable”

Stable Sorting algorithm.

— Itemsin input with the same key end up in the
same order as when they began.

— Important if keys have associated values

— Critical for RadixSort

RadixSort

¢ Radix ="“The base of anumber system”
(Webster' s dictionary)

 History: used in 1890 U.S. census by
Hollerith

« ldea: BinSort on each digit, bottom up.

RadixSort — magic! It works.

 Input list:
126, 328, 636, 341, 416, 131, 328
« BinSort on lower digit:
341, 131, 126, 636, 416, 328, 328
« BinSort result on next-higher digit:
416, 126, 328, 328, 131, 636, 341
« BinSort that result on highest digit:
126, 131, 328, 328, 341, 416, 636

Not magic. It provably works.

* Keys
— n-digit numbers
—base B

« Claim: after it BinSort, least significant i
digits are sorted.

—eg. B=10, i=3, keysare 1776 and 8234. 8234
comes before 1776 for last 3 digits.

Induction to the rescuel!!

* base case!
—i=0. Odigitsare sorted (that wasn't hard!)

Induction isrescuing us...

« Induction step
—assumefor i, prove for i+1.
— consider two numbers: X, Y. Say X; isith digit
of X (from theright)
* Xi;1 < Y., theni+1th BinSort will put them in order
* Xis1> Y, , samething
* Xi,1= Y, , order dependsonlast i digits. Induction
hypothesis says already sorted for these digits.
(Careful about ensuring that your BinSort preserves
order aka“stable”...)

Running time of Radixsort

¢ How many passes?
¢ How much work per pass?
e Tota time?

» Conclusion
— Not truly linear if K islarge.
* In practice
— RadixSort only good for large number of items,
relatively small keys
— Hard on the cache, vs. MergeSort/QuickSort

What data types can you
RadixSort?

« Any type T that can be BinSorted
« Any type T that can be broken into parts A
and B,
— You can reconstruct T from A and B
— A can be RadixSorted
— B can be RadixSorted
— A isaways more significant than B, in ordering

Example:

« 1-digit numbers can be BinSorted
¢ 2to 5-digit numbers can be BinSorted
without using too much memory
¢ 6-digit numbers, broken up into A=first 3
digits, B=last 3 digits.
— A and B can reconstruct original 6-digits
— A and B each RadixSortable as above
— A moresignificant than B

RadixSorting Strings

¢ 1 Character can be BinSorted
« Break stringsinto characters

« Need to know length of biggest string (or
calculate this on the fly).

RadixSorting Strings example

5th 4th 3rd 2nd 1st
pass |pass |pass |pass |pass
String1| Z i P p|Yy
Sting2 | Z a p NULLsare
. b just like fake
String3| a n t S iy characters
String4| f | a p|s

RadixSorting Strings running
time

* N isnumber of strings
* L islength of longest string
* RadixSort takes O(N*L)

Anatomy of areal number

-1.3892* 10
+1.507*101/
?£2givi or agtllfgaa)nd (aka
negative)
-1.0110100111* 21011

+1.101101001* 21

Pseudocode

void RadixSortReals (Array A, int arraySize) ({

RadixSort Significands in Array
RadixSort exponents in Array

Sweep thru Array,

put negative #’'s separate from positive #'s.
Flip order of negative #’s, & put them before

the positive #'s.

