
1

CSE 326: Data Structures
Sorting in (kind of) linear time

Hannah Tang and Brian Tjaden

Summer Quarter 2002

BinSort (a.k.a. BucketSort)

• If all keys are between 1 and K

• Have array of size K

• Put keys into correct bin (cell) of array

BinSort example
• K=5. list=(5,1,3,4,3,2,1,1,5,4,5)

5,5,5key = 5

4,4key = 4

3,3key = 3

2key = 2

1,1,1key = 1

Bins in array

Sorted list:
1,1,1,2,3,3,4,4,5,5,5

BinSort Running Time:

• K is a constant
– BinSort is linear time

• K is variable
– Not simply linear time

• K is large (e.g. 232)
– Impractical

BinSort is “stable”

• Stable Sorting algorithm.
– Items in input with the same key end up in the

same order as when they began.

– Important if keys have associated values

– Critical for RadixSort

RadixSort

• Radix = “The base of a number system”
(Webster’s dictionary)

• History: used in 1890 U.S. census by
Hollerith

• Idea: BinSort on each digit, bottom up.

2

RadixSort – magic! It works.

• Input list:
126, 328, 636, 341, 416, 131, 328

• BinSort on lower digit:
341, 131, 126, 636, 416, 328, 328

• BinSort result on next-higher digit:
416, 126, 328, 328, 131, 636, 341

• BinSort that result on highest digit:
126, 131, 328, 328, 341, 416, 636

Not magic. It provably works.

• Keys
– n-digit numbers

– base B

• Claim: after ith BinSort, least significant i
digits are sorted.
– e.g. B=10, i=3, keys are 1776 and 8234. 8234

comes before 1776 for last 3 digits.

Induction to the rescue!!!

• base case:
– i=0. 0 digits are sorted (that wasn’t hard!)

Induction is rescuing us…

• Induction step
– assume for i, prove for i+1.
– consider two numbers: X, Y. Say Xi is ith digit

of X (from the right)
• Xi+1 < Yi+1 then i+1th BinSort will put them in order
• Xi+1 > Yi+1 , same thing
• Xi+1 = Yi+1 , order depends on last i digits. Induction

hypothesis says already sorted for these digits.
(Careful about ensuring that your BinSort preserves
order aka “stable”…)

Running time of Radixsort

• How many passes?
• How much work per pass?
• Total time?

• Conclusion
– Not truly linear if K is large.

• In practice
– RadixSort only good for large number of items,

relatively small keys
– Hard on the cache, vs. MergeSort/QuickSort

What data types can you
RadixSort?

• Any type T that can be BinSorted

• Any type T that can be broken into parts A
and B,
– You can reconstruct T from A and B

– A can be RadixSorted

– B can be RadixSorted

– A is always more significant than B, in ordering

3

Example:

• 1-digit numbers can be BinSorted
• 2 to 5-digit numbers can be BinSorted

without using too much memory
• 6-digit numbers, broken up into A=first 3

digits, B=last 3 digits.
– A and B can reconstruct original 6-digits
– A and B each RadixSortable as above
– A more significant than B

RadixSorting Strings

• 1 Character can be BinSorted

• Break strings into characters

• Need to know length of biggest string (or
calculate this on the fly).

RadixSorting Strings example

spalfString 4

stnaString 3

pazString 2

yppizString 1

1st

pass
2nd

pass
3rd

pass
4th

pass
5th

pass

NULLs are
just like fake
characters

RadixSorting Strings running
time

• N is number of strings

• L is length of longest string

• RadixSort takes O(N*L)

Anatomy of a real number

-1.3892*1024

+1.507*10-17

Sign
(positive or
negative)

Significand (a.k.a.
mantissa)

Exponent

-1.0110100111*21011

+1.101101001*2-1

Pseudocode

void RadixSortReals (Array A, int arraySize) {

RadixSort Significands in Array
RadixSort exponents in Array

Sweep thru Array,
put negative #’s separate from positive #’s.

Flip order of negative #’s, & put them before
the positive #’s.

}

