
1

CSE 326: Data Structures
Sorting by Comparison

Hannah Tang and Brian Tjaden

Summer Quarter 2002

Sorting by Comparison
algorithms

• Simple: Selection Sort
– (Insertion Sort, Bubble Sort, Shell Sort)

• Good worst case: HeapSort, AVLSort, MergeSort

• Quick: QuickSort

• Imaginary: StrawSort (aka, BrianSort)

• Can we do better?

Selection Sort idea

• Find the smallest element, put it first

• Find the next smallest element, put it
second

• Find the next smallest, put it next

• etc.

Selection Sort

void SelectionSort (Array a[1..n]) {
for (i=0, i<n; ++i) {

Find the smallest entry in Array.
Let j be the index of that entry.
Swap(a[i],a[j])’

}

while (other people are coding QuickSort/MergeSort)
{

Twiddle thumbs
}

}

HeapSort: sorting with a priority
queue ADT (heap)

756

27

18
801

35

13

23 44
87

8 13 18 23 27

Shove everything into a queue, take them out
smallest to largest.

AVL Sort?

2

MergeSort MergeSort (Array [1..n])
Split Array in half
Recursively sort each half
Merge two halves together

Merge (a1[1..n],a2[1..n])

i1=1, i2=1
While (i1<n, i2<n) {

if (a1[i1] < a2[i2]) {
Next is a1[i1]
i1++

} else {
Next is a2[i2]
i2++

}
}

MergeSort Running Time

QuickSort

28

15 47< <

< <

< <

Pick a “pivot”. Divide into less-than & greater-than pivot.
Sort each side recursively.

Picture from PhotoDisc.com

QuickSort Partition

6953827Pick pivot:

Partition
with cursors

6953827

< >

6953827

< >

2 goes to
less-than

QuickSort Partition (cont’d)

8953627

< >

6, 8 swap
less/greater-than

89536273,5 less-than
9 greater-than

8953627
Partition done.
Recursively
sort each side.

QuickSort
Worst case

3

Dealing with Slow QuickSorts

• Randomly permute input
– Bad cases more common than simple

probability would suggest. So, make it truly
random.

• Pick pivot cleverly
– “Median-of-3” rule takes Median(first, middle,

last) element.

• Choose pivot point randomly!

QuickSelect

• What if we want to find the kth

biggest element in an array?

• What if k = N/2 (i.e., we want to find
the median)?

QuickSelect

6953827Pick pivot:

< >8953627Partition array:

If (k == partition_index + 1), we are done!
else recursively call QuickSelect on one subarray.

StrawSort (aka BrianSort)

Could we do better?*

* (no. sorry.)

Worst case time Lower Bound

• How many comparisons does it take before
we can be sure of the order?

• This is the minimum # of comparisons that
any algorithm could do.

4

Decision tree to sort list A,B,C

A<B

B<C

A<C C
<A

C
<B

B<A

A<C

C
<A

B<C C
<B

A<B B<A

A<B
C<B

A,B,C.

A,C,B. C,A,B.

B,A,C. B<A
C<A

B,C,A. C,B,A

Legend
facts Internal node, with facts known so far

A,B,C Leaf node, with ordering of A,B,C
C<A Edge, with result of one comparison

Max depth of the decision tree

• What’s the most leaves a binary tree of
height h could have?

• What’s the shallowest tree with L leaves?

• A decision tree to sort N elements must
have N! leaves.

• Any sorting algorithm that uses only
comparisons between elements requires at
least log(N!) comparisons in the worst case!

