CSE 326: Data Structures
Sorting by Comparison

Hannah Tang and Brian Tjaden
Summer Quarter 2002

Sorting by Comparison
algorithms

» Simple: Selection Sort
— (Insertion Sort, Bubble Sort, Shell Sort)
» Good worst case: HeapSort, AVL Sort, MergeSort
* Quick: QuickSort
* Imaginary: StrawSort (aka, BrianSort)
¢ Can we do better?

Sdlection Sort idea

Find the smallest element, put it first

Find the next smallest element, put it
second

Find the next smallest, put it next
etc.

Sdlection Sort

void SelectionSort (Array all..nl) (
for (i=0, i<n; ++i) {
Find the smallest entry in Array.
Let j be the index of that entry.
Swap (a[i],alj])"

}

while (other people are coding QuickSort/MergeSort)

{
}

Twiddle thumbs

HeapSort: sorting with a priority
gqueue ADT (heap)

13 18
801 57

ggs 13 18 23 27

Shove everything into a queue, take them out
smallest to largest.

AVL Sort?




MergeSort MergeSort (array [1..n)
Split Array in half
Recursively sort each half
Merge two halves together

Merge (ail1i..n],a2[1..n])
i1=1, i2=1
While (il<n, i2<n) ({
if (allill < a2[i2])
Next is all[il]
il++
} else {
Next is a2[i2]
124+

MergeSort Running Time

<@ < “
D0} D<)

Pick a“pivot”. Divideinto lessthan & greater-than pivot.
Sort each side recursively.

QuickSort Partition

Pick pivot: .2 ‘8 ‘3 ‘5 ‘9 ‘6 |

e owies B2 18 [2 5 [o To |
< >

2goesto 2 CHENENCECH
A A
< >

less-than

QuickSort Partition (cont’ d)

o
less/greater-than EB
< >
3,5 less-than 2 6 3 5 9 8
9 greater-than

Partition done.
Recursively 2 6 3 5|9 8

sort each side.

QuickSort
Worst case




Dealing with Slow QuickSorts

« Randomly permute input

— Bad cases more common than simple
probability would suggest. So, make it truly
random.

* Pick pivot cleverly

—“Median-of-3” rule takes Median(first, middle,
last) element.

¢ Choose pivot point randomly!

QuickSelect

» What if we want to find the ki
biggest element in an array?

* What if k=N/2 (i.e., wewant to find
the median)?

QuickSelect

Pick pivot: .2 ‘8 ‘3 ‘5 ‘9 ‘G |

Partition array: 2 6 3 5|9 8

If (k == partition_index + 1), we are done!
elserecursively call QuickSelect on one subarray.

StrawSort (aka BrianSort)

)

am

o)

o)

Could we do better?*

* (no. sorry.)

Worst case time Lower Bound

¢ How many comparisons does it take before
we can be sure of the order?

¢ Thisisthe minimum # of comparisons that
any agorithm could do.




Decision treeto sort list A,B,C Max depth of the decision tree

¢ What's the most leaves a binary tree of
height h could have?

* What' s the shallowest tree with L |eaves?

¢ A decision treeto sort N elements must

- Internal node, with facts known so far
’ I leaves.
Legend Leaf node, with ordering of A,B,C have N! |
g

c<A__ Edge, with result of one comparison

Any sorting algorithm that uses only
comparisons between elements requires at
least log(N!) comparisons in the worst case!




