

Hannah Tang and Brian Tjaden Summer Quarter 2002 What's a Good Maze?









## Disjoint Sets Even More Formally

- Given a set  $U = \{a_1, a_2, ..., a_n\}$
- Maintain a *partition* of U, a set of subsets of  $U \{S_1, S_2, \dots, S_k\}$  such that:
  - Each pair of subsets  $S_i$  and  $S_j$  are disjoint:  $S_i \cap S_j = \emptyset$
  - Together, the subsets cover U:  $U = \bigcup S_i$
  - Each subset has a unique name



















































| Interlude: A Tour of Slow Functions                               |   |     |      |       |     |     |          |              |
|-------------------------------------------------------------------|---|-----|------|-------|-----|-----|----------|--------------|
|                                                                   | 2 | 64  | 1024 | 32768 | 220 | 230 | 2220     | $2^{2_{20}}$ |
| log                                                               | 1 | 6   | 10   | 15    | 20  | 30  | $2^{20}$ | $2^{220}$    |
| log log                                                           | 0 | 2.6 | 3.9  | 4.6   | 4.9 | 4.9 | 20       | 220          |
| log log log                                                       | 0 | 1.4 | 1.9  | 2.1   | 2.3 | 2.3 | 4.3      | 20           |
| log*                                                              | 1 | 3   | 3    | 4     | 4   | 4   | 5        | 6            |
| Let $\log^{(k)} n = \log (\log (\log \dots (\log n)))$<br>k times |   |     |      |       |     |     |          |              |
| Then, let $\log^* n = \min k$ such that $\log^{(k)} n \le 1$      |   |     |      |       |     |     |          |              |



Ackermann created a <u>really</u> big function A(x, y) with the inverse  $\alpha(x, y)$  which is <u>really</u> small

How fast does  $\alpha(x, y)$  grow?  $\alpha(x, y) = 4$  for *x* far larger than the number of atoms in the universe (2<sup>300</sup>)

 $\boldsymbol{\alpha}$  shows up in:

- Computation Geometry (surface complexity)

- Combinatorics of sequences

## Complex Complexity of Weighted Union + Path Compression

Tarjan proved that *m* weighted union and find operations on a set of *n* elements have worst case complexity of  $O(m \cdot \alpha(m, n))$ 

For **all** practical purposes this is amortized constant time: O(m-4) for *m* operations!

In some practical cases, one or both is unnecessary, because trees do not naturally get very deep.

## **Disjoint Sets ADT Summary**

- Also known as Union-Find or Disjoint Set Union/Find
- Simple, efficient implementation – With weighted union and path compression
- Great asymptotic bounds
- Kind of weird at first glance, but lots of applications