

What's a Good Maze?

Maze Construction Algorithm

- Given:
- A collection of rooms \mathbf{V}
- Connections between the rooms (initially all closed) \mathbf{E}
- We want to build a collection of connections to knock down,
$\mathbf{E}^{\prime} \subseteq \mathbf{E}$, such that one unique path connects every two rooms
The Problem, Formally

- "If \mathbf{A} and \mathbf{B} have not yet been connected"
- Are two elements in the same set?

While edges remain in \mathbf{E} \{
(\mathbf{A}, \mathbf{B}) $=$ RemoveRandomWall()
if $(\mathbf{A}$ and \mathbf{B} have not been connected) \{

$$
\text { Add }(\mathbf{A}, \mathbf{B}) \text { to } \mathbf{E}^{\prime}
$$ Mark \mathbf{A} and \mathbf{B} as connected

\}

Disjoint Sets ADT

- $\operatorname{Find}(x)$
- Returns set identifier
$-\operatorname{Find}(x)=\operatorname{Find}(y)$ iff x and y are in the same set

- Union(A, B)
- Arguments are set identifiers
- How do we union the sets containing x and y ?
- MakeNewSet(item)
- Create a new set containing only item

Disjoint Sets Formal Properties

- Equivalence property
- Every element of a DS belongs to exactly one set
- Dynamic equivalence property
- The set of an element can change after execution of a union

Our Modified Maze Construction Algorithm

While edges remain in \mathbf{E}
$(\mathbf{A}, \mathbf{B})=$ RemoveRandomWall()
if ($\operatorname{Find}(\mathbf{A})$! $=\operatorname{Find}(\mathbf{B})$)
$\mathbf{E}^{\prime}=\mathbf{E}^{\prime} \mathrm{U} \quad(\mathbf{A}, \mathbf{B})$
Union(Find(A), Find(B))

Example

Example, continued

$\{\underline{a}\}\{\underline{b}\}\{\underline{c}\}\{\underline{d}\}\{\underline{e}\}\{\mathbf{f}\}\{\mathbf{a}\}\{\underline{b}\}\{\mathbf{i}\}$
find(b) $\Rightarrow \underline{b}$
find(e) $\Rightarrow \underline{e}$
find $(\mathrm{b}) \neq$ find (e) so: add 1 to \mathbf{E}^{\prime}
union(b, e)
$\{\underline{a}\}\{\underline{b}, \mathbf{e}\}\{\underline{c}\}\{d\}\{f\}\{\underline{a}\}\{\underline{b}\}\{i\}$

Find Implementation

Weighted Union Code

```
ID Union (ID x, ID y) {
    // If up[x] and up[y] aren't both
    // -1, this algorithm is in trouble
    if (weight[x] > weight[y]) {
        up[y] = x;
        weight[x] += weight[y];
    }
        new runtime for Union():
    else {
        up[x] = y;
        weight[y] += weight[x]
    }
        new runtime for Find():
}
```


Interlude: A Tour of Slow Functions								
	2	64	1024	32768	2^{20}	2^{30}	2^{220}	2^{2220}
log	1	6	10	15	20	30	220	2220
$\log \log$	0	2.6	3.9	4.6	4.9	4.9	20	2^{20}
لمو	0	1.4	1.9	2.1	2.3	2.3	4.3	20
log*	1	3	3	4	4	4	5	6
Let $\log ^{(k)} \mathrm{n}=\underbrace{\log \left(\log \left(\log _{\ldots}^{(\log n)} n\right)\right)}_{k \text { times }}$ Then, let $\log ^{*} \mathrm{n}=$ minimum k such that $\log ^{(\mathrm{k})} \mathrm{n} \leq 1$								

An Even Slower Function

Ackermann created a really big function $A(x, y)$ with the inverse $\alpha(\mathrm{x}, \mathrm{y})$ which is really small

How fast does $\alpha(\mathrm{x}, \mathrm{y})$ grow?
$\alpha(\mathrm{x}, \mathrm{y})=4$ for x far larger than the number of atoms in the universe (2^{300})
α shows up in:

- Computation Geometry (surface complexity)
- Combinatorics of sequences

Complex Complexity of Weighted Union + Path Compression

Tarjan proved that m weighted union and find operations on a set of n elements have worst case complexity of $\mathrm{O}(m \cdot \alpha(m, n))$

For all practical purposes this is amortized constanttime: $\mathrm{O}(m \cdot 4)$ for m operations!

In some practical cases, one or both is unnecessary, because trees do not naturally get very deep.

Disjoint Sets ADT Summary

- Also known as Union-Find or Disjoint Set Union/Find
- Simple, efficient implementation
- With weighted union and path compression
- Great asymptotic bounds
- Kind of weird at first glance, but lots of applications

