
1

CSE 326: Data Structures
Disjoint Sets ADT

Hannah Tang and Brian Tjaden
Summer Quarter 2002

What’s a Good Maze?

Maze Construction Algorithm

While edges remain in E {
(A, B) = RemoveRandomWall()
if(A and B have not been

connected) {
Add (A, B) to E’
Mark A and B as connected

}
}

A

B

• Given:
• A collection of rooms V
• Connections between the rooms (initially all closed) E

• We want to build a collection of connections to knock down,
E’ ⊆ E, such that one unique path connects every two rooms

The Problem, Formally

• “If A and B have not yet been
connected”
– Are two elements in the same set?

• “Mark A and B as connected”

– Form the union of two sets

Disjoint Sets ADT

• Find(x)
– Returns set identifier
– Find(x) = Find(y) iff x and y

are in the same set

• Union(A, B)
– Arguments are set identifiers
– How do we union the sets

containing x and y?

• MakeNewSet(item)
– Create a new set containing

only item

A

B

Disjoint Sets Formal Properties

• Equivalence property
– Every element of a DS

belongs to exactly one set

• Dynamic equivalence
property
– The set of an element can

change after execution of
a union

{1,4,8}

{7}

{6}

{5,9,10}
{2,3}

find(4)

8

union(3,6)

{2,3,6}

2

Disjoint Sets Even More Formally

• Given a set U = {a1, a2, … , an}
• Maintain a partition of U, a set of subsets of

U {S1, S2, … , Sk} such that:

– Each pair of subsets Si and Sj are disjoint:

– Together, the subsets cover U:

– Each subset has a unique name

U
k

i
iSU

1=

=

∅=∩ ji SS

Our Modified Maze Construction Algorithm

While edges remain in E
(A, B) = RemoveRandomWall()
if(Find(A) != Find(B))

E′ = E′ U (A, B)
Union(Find(A), Find(B))

A

B

Example

Construct the maze on the right

Initially (the name of each set is
underlined):

{a}{b}{c}{d}{e}{f}{g}{h}{i}

Order of edges in blue

3

2

4

11

10

1

7

9

6

8

12 5

a b c

d e f

hg i

Example, continued
{a}{b}{c}{d}{e}{f}{g}{h}{i}

find(b) ⇒ b
find(e) ⇒ e
find(b) ≠ find(e) so:

add 1 to E′
union(b, e)

{a}{b,e}{c}{d}{f}{g}{h}{i}

3

2

4

11

10

7

9

6

8

12 5

a b c

d e f

hg i

Order of edges in blue

DS ADT Tree Representation

• Maintain a forest
of up-trees

• Each set is a tree
• The root of a tree

is the set identifier

A

B
B

A

Find Implementation

Find(x)
– Walk parents of x to

the root

Runtime:

A

3

Union Implementation

Union(A, B)
– Join the two trees

– Since A and B are
already the roots of a
tree, this is easy!

B

Runtime:

A

B

The Whole Example (1/11)

e

f g ha b c d i

union(b,e)

e f g ha b c d i

3

2

4

11

10

1

7

9

6

8

12 5

a b c

d e f

hg i

union(a,d)

e

f g ha b c d i

f g ha b c i

d e

The Whole Example (2/11)
3

2

4

11

10

7

9

6

8

12 5

a b c

d e f

hg i

The Whole Example (3/11)

union(a,b)

f g ha b c i

d e

f g ha

b

c i

d

e

3

4

11

10

7

9

6

8

12 5

a b c

d e f

hg i

The Whole Example (4/11)

find(d) = find(e)
No union!

f g ha

b

c i

d

e

While we’re finding e, could we do anything else?

4

11

10

7

9

6

8

12 5

a b c

d e f

hg i

The Whole Example (5/11)

union(h,i)

f g ha

b

c i

d

e

f g ha

b

c

id

e

11

10

7

9

6

8

12 5

a b c

d e f

hg i

4

The Whole Example (6/11)

union(c,f)

f g ha

b

c

id

e

f

g ha

b

c

id

e

11

10

7

9

6

8

12

a b c

d e f

hg i

The Whole Example (7/11)
find(e)
find(f)
union(a,c)

f

g ha

b

c

id

e

f

g h

a

b

c

i

d

eCould we do a better job on this union?

11

10

7

9 8

12

a b c

d e f

hg i

The Whole Example (8/11)

f

g

ha

b

c

id

e

f

g h

a

b

c

i

d

e

find(f)
find(i)
union(c,h)

11

10

9 8

12

a b c

d e f

hg i

The Whole Example (9/11)

find(e) = find(h) and find(b) = find(c)
So, no unions for either of these.

f

g

ha

b

c

id

e

11

10

9

12

a b c

d e f

hg i

The Whole Example (10/11)
find(d)
find(g)
union(c, g)

f

g

ha

b

c

id

e

f

g

ha

b

c

id

e

11

12

a b c

d e f

hg i

The Whole Example (11/11)
find(g) = find(h)
So, no union.
And, we’re done!

f

g

ha

b

c

id

e
Ooh… scary!

Such a hard maze!

12

a b c

d e f

hg i

a b c

d e f

hg i

5

f

g ha

b

c

id

e

0 -1 0 1 2 -1 -1 7-1

0 (a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6 (g) 7 (h) 8 (i)

Nifty storage trick

A forest of up-trees
can easily be stored
in an array.

Also, if the node
names are integers
or characters, we
can use a very
simple, perfect hash.

up-index:

Implementation

ID Find(Object x) {
ID xID = hTable[x];

while(up[xID] != -1) {
xID = up[xID];

}

return xID;
}

ID Union(ID x, ID y) {
up[y] = x;

}

typedef ID int;

Improving Union

f

g ha

b

c

id

e

f

g h

a

b

c

i

d

e

Could we do a better
job on this union?

f

g ha

b

c

id

e

Weighted Union Code

ID Union(ID x, ID y) {
// If up[x] and up[y] aren’t both
// -1, this algorithm is in trouble

if (weight[x] > weight[y]) {
up[y] = x;
weight[x] += weight[y];

}
else {
up[x] = y;
weight[y] += weight[x];

}
}

new runtime for Union():

new runtime for Find():

Weighted Union Find Analysis

• Finds with weighted union are O(max up-tree height)
• But, an up-tree of height h with weighted union must

have at least 2h nodes

• ∴, 2max height = n and
max height = log n

• So, find takes O(log n)

Base case: h = 0, tree has 20 = 1 node
Induction hypothesis: assume true for h< h′

A merge can only increase tree height by
one over the smaller tree. So, a tree of
height h′-1 was merged with a larger tree to
form the new tree. Each tree then has ≥ 2h ′-1

nodes by the induction hypotheses for a
total of at least 2h ′ nodes. QED.

Improving Find

f g ha
b

c i
d

e

While we’re finding e,
could we do anything else?

Wait - what’s there to
improve?

6

Path Compression!
find(e)

f ha

b

c

d

e

g

i

f ha

c

d

e

g

b

i

Path Compression Code

ID Find(Object x) {
// x had better be in
// the set!
ID xID = hTable[x];
ID i = xID;

// Get the root for
// this set
while(up[xID] != -1) {
xID = up[xID];

}

// Change the parent for
// all nodes along the path
while(up[i] != -1) {

temp = up[i];
up[i] = xID;
i = temp;

}
return xID;

}

(New?) runtime for Find():

Interlude: A Tour of Slow Functions

65444331log*

204.32.32.32.11.91.40log log log

220204.94.94.63.92.60log log

22202203020151061log

222202220230220327681024642

Let log(k) n = log (log (log … (log n)))

Then, let log* n = minimum k such that log(k) n ≤ 1

k times

An Even Slower Function

Ackermann created a really big function A(x, y) with
the inverse α(x, y) which is really small

How fast does α(x, y) grow?
α(x, y) = 4 for x far larger than the number of
atoms in the universe (2300)

α shows up in:
– Computation Geometry (surface complexity)
– Combinatorics of sequences

Complex Complexity of
Weighted Union + Path Compression

Tarjan proved that m weighted union and find operations
on a set of n elements have worst case complexity of
O(m ⋅α(m, n))

For all practical purposes this is amortized constant time:

O(m ⋅4) for m operations!

In some practical cases, one or both is unnecessary,
because trees do not naturally get very deep.

Disjoint Sets ADT Summary

• Also known as Union-Find or Disjoint Set
Union/Find

• Simple, efficient implementation
– With weighted union and path compression

• Great asymptotic bounds
• Kind of weird at first glance, but lots of

applications

