CSE 326: Data Structures
Digoint SetsADT

Hannah Tang and Brian Tjaden
Summer Quarter 2002

Maze Construction Algorithm

* Given:
« A collection of roomsV

Connections between the rooms (initialy all closed) E

Wewant to build acollection of connections to knock down,
E' | E, suchthat oneunique path connects every two rooms

Wi le edges remain in E { |
(A, B) = RenpveRandoml | ()
if(A and B have not been A

connected) {
Add (A B) to E '

Mark A and B as connected

What's a Good Maze?

The Problem, Formally

77N

7N
’ @ N7 \ + “If Aand Bhavenot yet been
/
! 1 connected”
!) ! — Aretwo dementsin the same set?
1 _--—-_ /
-~ ~~~
///’——_/,\
= \
S TN RN v “Mark Aand Bas connected”
I)
FARVAN I [\ 1 - Formtheunion of two sets
I 1 v/
[} ~ 7 \]
\ S=—=- __~ /l
\ o=~

B
) —
}
Digoint SetsADT
//-\\
« Find(x) AN
— Returns set identifier 4 PO
— Find(x) = Find(y)iff x and y \ 1
arein the same set O
« Union(A, B) T
— Arguments are set identifiers
- How do we union the sets 7T
containing x and y? B/ \
« MakeNewSet(item) / @ !
]

— Create anew set containing N S
onlyitem ~ -

Digoint Sets Formal Properties

« Equivalence property

— Every element of aDS —]
belongsto exactly oneset find(4) A

¢ \
{148 7-{6}
+ Dynamic equivalence 8’ {0 {2}46}
property 2

union(3,6) =
— Theset of an element can

change after execution of
aunion

Digoint Sets Even More Formally

e GivenasetU={a,,a,,...,a,}

* Maintain apartition of U, aset of subsets of
U{s,S, ..., S} suchthat:
— Each pair of subsets § and § aredisjoint: SCS =&
— Together, the subsets cover U: U =S

i=1
— Each subset has a unique name

Our Modified Maze Construction Algorithm

Wil e edges remain in E L
(A, B) = RenpveRandomal | ()

if(Find(A !'= Find(B)) A
E¢= E¢CU (A, B
Union(Find(A), Find(B)) B

Example

EL . m 10‘"';@

Construct the maze on the right -f

Initidly (the name of each setis I_T_L .I:L 7" |I|

underlined):]
{aH{g {cH{dH{e{iH{ g{hH{} l?

e m . m

Order of edgesinblue

Example, continued
{aH{ B {H{dH{eHB{ g{hH}
|;|‘3 e]

find(b) P b ' ‘ ;g

find(e) b e :

find(b) * find(e) so: D B i
add 1 toE¢ N
union(b, €) 11: 9_ 8

{aH{heH{H HIH{ dH{H{i}

Order of edgesinblue

DS ADT Tree Representation

—
AT
/ \

\ ! o0 ¢ Maintain a forest

\)) ‘| of uptrees

o ¢ Each setisatree

¢ Theroot of atree
isthe set identifier

Find Implementation

Find(x)
j:]\ — Walk parentsof xto
theroot
1 ®0®

A

Runtime:

Union Implementation

A B
1 o0 | J
l Union(A, B)
— Join thetwo trees
B — SinceA and B are
‘| aready theroots of a
}\ tree, thisis easy!
i o0
[] Runtime:

The Whole Example (1/11) = &:‘ ,,,,, EI T]

union(b,e) E‘lz D .

ééééééébé
éiéé 6000

|
O OO

S
%o-

The Whole Example (3/11) Q 13#3

union(a,b) sz h

q§§¢¢¢¢¢

) OO0

DTD =

i 'Q 107 ¢
The Whole Example (4/11) @4@7 ----- [f?j
find(d) = find(e) ?12 h SIil

No union!

| L1111
Q%@QQ@QQ

While we're finding e, could we do anything else?

s
The Whole Example (5/11) 0 ELFJ
ien(h) B0k
SABH | & dbd
3 c AN REEE
SO
e p

TheWhoIeExampIe(6/11)EIﬂ [}_J 6

union(c,f)

E-“_'LE‘ 10 E-‘

=
11 9 8
Eﬂ‘ 12 m'_‘m

& ®
o

0% -{m

O OO
o

The Whole Example (7/11)

find(e)
find(f)
union(a,)

b

A

>
vi v
o > o

[N
|y

p7EeeT
£ LT
=TT

sho¥e¥eling

3
Could we do a better job on this union? é

QAO0| | @
A X

O &
00

The Whole Example (8/11) E_E—E

find(f)
find(i)
union(c,h)

50
4o
O

Q00
éé

The Whole Example (9/11)

find(e) = find(h) and find(b) = find(c)
So, no unions for either of these.

T4 a‘:N‘|
B =T

find(d)
find(g)

[
The Whole Example (10/11) n é:t_%
[r]

mENE
The Whole Example (11/11) i il _é
find(g) = find(h)

So, no union.
And, we're donel

=0
1 o

«Q
3
-
v |
[

J—11 [
NI
o] B4
d\ e < >f|
A A
D J—

g h< »j
Ooh... scary!

Such a hard maze!

Nifty storage trick
A forest of up-trees

can easily be stored é QJ_) é d)
inan array. A\

Also, if the node é E) é) é
names are integers
or characters, we
can use avery é} 1

simple, perfect hash.

up-index: |-1 O [-1|0 |21 |2 [-1]-1]7

I mplementation

typedef IDint;

I D Find(Qoject x) { ID Uhion(IDx, IDy) {
ID xID = hTabl e[x] ; uplyl = x;
}
while(up[xID] '=-1) {
xID = up[xI O0;
}

return xID;

}

Improving Union

) b g Could we do a better
4 job on thisunion?

il

€

hiod

Weighted Union Code

ID Wion(ID x, IDy) {
/1 1f up[x] and up[y] aren’t both
/1 -1, this algorithmis in trouble

if (weight[x] > weight[y]) {

uplyl =x;

wei ght [x] += weight[y];
} new runtime for Union():
el se {

up[x] =y;

wei ght[y] += weight[X];
} new runtime for Find():

}

Weighted Union Find Analysis

¢ Finds with weighted union are O(max up-tree height)
* But, an up-tree of height h with weighted union must

have at least 2'n
Base case: h =0, tree has 2°= 1 node

Induction hypothesis: assumetruefor h< h¢

A merge can only increase tree height by

oneover the smaller tree. So, atree of

e \ 2maxheight = n and height h¢1 was merged with alarger treeto
! . form the new tree. Each tree then has 3 211

max hei ght = Iog n nodes by the induction hypotheses for a

» So, find takes O(lOg n) total of at Teast Z*nodes. QED.

Improving Find

f g h i
b Wait - what's there to
i improve?

Whilewe're findinge,
could we do anything else?

Path Compression!

find(e)

O 5o b
50 = SIOD
Q © 6ég

»

ID
/

Path Compression Code

Fi nd(oj ect x) {
/' x had better be in

/1 Change the parent for
/1 all nodes along the path

/1 the set! while(up[i] '=-1) {
ID xI D = hTabl e[x] ; tenp = up[i];
IDi = xID up[i] = xID

i =tenp;
/1 Get the root for }
Il this set return xID;
while(up[xID !'=-1) { }

}

xID = up[xID;

(New?) runtime for Find():

Interlude: A Tour of Slow Functions

2 |64 |1024 |32768 |220 (230 |22 (2220

log 1 6 10 15 20 130 220 [2220
loglog 0 126139 4.6 49 (49 (20 [220
logloglog |Q 14119 21 23123 143120
log* 1 3 3 4 4 4 5 6
Letlog®n= bag (log (1eg ... (log.n)))
k times

Then, letlog* n=minimum ksuch that log® n £ 1

An Even Slower Function

Ackermann created aredly big function A(x, y) with

theinverse a(x, y) whichisredly small

How fast does a(x, y) grow?

a(x,y) =4forxfar larger than the number of
atoms in the universe (200

a shows up in:

— Computation Geometry (surface complexity)
— Combinatorics of sequences

Complex Complexity of
Weighted Union + Path Compression
Tarjan proved thatm weighted union and find operations

on aset of n eements have worst case complexity of
O(m>a(m, n))

For all practical purposes thisis amortized constanttime:
O(mx) for m operations!

In some practical cases, one or both is unnecessary,
because trees do not naturally get very deep.

Digoint SetsADT Summary

Also known asUnion-Find or Digoint Set
Union/Find

Simple, efficient implementation
— With weighted union and path compression
Great asymptotic bounds

Kind of weird at first glance, but lots of
gpplications

