

Remember This List?

- How should we resolve collisions?
- What should the table size be?
- What should the hash function be?
- How well does hashing work in the real world?
- We'll see a case study today!

Hashing Dilemma

Suppose your WorstEnemy 1) knows your hash function; 2) gets to decide which keys to send you?

Faced with this enticing possibility, WorstEnemy decides to: a) Send you keys which maximize collisions for your hash function b) Take a nap.

Moral: No single hash function can protect you!
Faced with this dilemma, you:
a) Give up and use a linked list for your Dictionary.
b) Drop out of software, and choose a career in fast foods.
c) Run and hide.
d) Proceed to the next slide, in hope of a better alternative.

Definition
\mathbf{H} is a universal collection of hash functions if and only if For any two keys k_{1}, k_{2} in K , there are at most $|\mathrm{H}| / \mathrm{m}$ functions in H for which $h\left(k_{1}\right)=h\left(k_{2}\right)$.

- So ... if we randomly choose a hash function from H , our chances of collision are no more than if we get to choose hash table entries at random!

Random Hashing - Not!

How can we "randomly choose a hash function"?
Certainly we cannot randomly choose hash functions at runtime, interspersed amongst the inserts, finds, deletes! Why not?

- We can, however, randomly choose a hash function each time we initialize a new hashtable

Good Hashing:
 Universal Hash Function $A\left(\mathrm{UHF}_{\mathrm{a}}\right)$

Parameterized by prime table size and vector of r integers: $\mathrm{a}=\left\langle\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{r}}\right\rangle$ where $0<=\mathrm{a}_{\mathrm{i}}<$ size

Represent each key as a vector k of r integers, where $k_{i}<$ size

- size $=11$, key $=39752==>\langle 3,9,7,5,2\rangle$
- size $=29$, key $=$ "hello world" $==>$
<8,5,12,12,15,23,15,18,12,4>
$\mathrm{h}_{\mathrm{a}}(\mathrm{k})=\left(\sum_{i=0}^{r} a_{i} k_{i}\right) \bmod$ size

Conclusions

- WorstEnemy never knows which hash function we will choose neither do we!
- No single input (set of keys) can always evoke worst-case behavior

$\mathrm{UHF}_{\mathrm{a}}$: Example

- Context: hash strings of length 3 in a table of size 131
let $\mathrm{a}=\langle 35,100,21\rangle$
$h_{a}($ "xyz") $=(35 * 120+100 * 121+21 * 122) \% 131$ $=129$

Let $\mathrm{b}=<25,90,83>$
$\mathrm{h}_{\mathrm{b}}(" x y z ")=\left(25 * 120+90^{*} 121+83 * 122\right) \% 131$ $=43$

Thinking about $\mathrm{UHF}_{\mathrm{a}}$

Strengths:

- Works on any type as long as you can map keys to vectors
- If we're building a static table, we can try many values of the hash vector <a>
- Random <a> has guaranteed good properties no matter what we're hashing

Weaknesses:

- Must choose prime table size larger than any k_{i}

Good Hashing:
Universal Hash Function B $\left(\mathrm{UHF}_{b}\right)$

Parameterized by j, a, and b :
$-j *$ size should fit into an int

- a and b must be less than size
$h_{j, a, b}(k)=((a k+b) \bmod (j * s i z e)) / j$

Thinking about $\mathrm{UHF}_{\mathrm{b}}$
Strengths
- If we're building a static table, we can try many parameter
values
- Randoma,b has guaranteed good properties no matter
what we're hashing
- Can choose any size table
- Very efficient if j and size are powers of 2 - why?
Weaknesses
- Need to turn non-integer keys into integers

Thinking about $\mathrm{UHF}_{\mathrm{b}}$

- If we're building a static table, we can try many parameter values

Random a, b has guaranteed good properties no matter what we're hashing

- Can choose any size table
- Very efficient if j and size are powers of 2 - why?
eaknesses
- Need to turn non-integer keys into integers

$\mathrm{UHF}_{\mathrm{b}}$: Example

Context: hash integers in a table of size 160
Let $j=32, a=13, b=142$
$\mathrm{h}_{j, a, b}(1000)=((13 * 1000+142) \%(32 * 160)) / 32$
$=(13142 \% 5120) / 32$
$=2902 / 32$
$=90$
Let $j=31, a=82, b=112$
$\mathrm{h}_{j, a, b}(1000)=\left(\left(82^{*} 1000+112\right) \%(31 * 160)\right) / 31$ $=(82112 \% 4960) / 31$ $=2752 / 31$ $=89$

Perfect Hashing

When we know the entire key set in advance ...

- Examples: programming language keywords, CD-ROM file list, spelling dictionary, etc.
... then perfect hashing lets us achieve:
- Worst-case O(1) time complexity!
- Worst-case $O(n)$ space complexity!

Perfect Hashing Technique

- Static set of n known keys
- Separate chaining, two-level hash
- Primary hash table size $=n$
- $\mathrm{j}^{\text {th }}$ secondary hash table size $=n_{j}{ }^{2}$ (where n_{j} keys hash to slot j in primary hash table)
- Universal hash functions in all hash tables
- Conduct (a few!) random trials, until
 we get collision-free hash functions

Perfect Hashing Theorems ${ }^{2}$

Theorem: If we store n keys in a hash table of size n^{2} using a randomly chosen universal hash function, then the probability of any collision is < $1 / 2$.

Theorem: If we store n keys in a hash table of size $\mathrm{m}=\mathrm{n}$ using a randomly chosen universal hash function, then

$$
E\left[\sum_{j=1}^{m-1} n_{j}^{2}\right]^{2}<2 n
$$

where n_{j} is the number of keys hashing to slot j .
Corollary: If we store n keys in a hash table of size $m=n$ using a randoml y chosen Corolsal hash function and we set the size of each secondary harh table to $m=n$
then:
b) The probability that the total storage used for all secondary hash tables exceeds 4 n is less than $1 / 2$ The expected amount of storage required for all secondary hash tables is less than 2 n .
${ }^{2}$ Intro to Algorithms $2^{\text {nd }}$ ed. Cormen,
Leiserson, Rivest, Stein

Perfect Hashing Conclusions

Perfect hashing theorems set tight expected bounds on sizes and collision behavior of all the hash tables (primary and all secondaries).
\rightarrow Conduct a few random trials of universal hash functions, by simply varying UHF parameters, until we get a set of UHFs and associated table sizes which deliver ...

- Worst-case O(1) time complexity!
- Worst-case O(n) space complexity!

Extendible Hashing: Cost of a Database Query

Extendible Hashing

Hashing technique for huge data sets

Extendible Hash Table

- Directory entry:key prefix (first k bits) and a pointer to the bucket with all keys starting with its prefix
- Optimizes to reduce disk accesses
- Each bucket contains keys matching on first $j \leq k$ bits, plus the value associated with each key
- Each hash bucket fits on one disk block
- Better than B-Trees if order is not important - why?

Table contains:

- Buckets, each fitting in one disk block, with the data
- A directory that fits in one disk block is used to hash to the correct bucket

If Extendible Hashing Doesn't Cut It

Store only pointers/references to the items: (key, value) pairs are in disk

+ (Potentially) much smaller M
+ Fewer items in the directory
- One extra disk access!

Rehash

+ Potentially better distribution over the buckets
+ Fewer unnecessary items in the directory
- Can't solve the problem if there's simply too much data

What if these don't work?

- Use a B-Tree to store the directory!

Hash Wrap-up (part 2)

- Also: Extendible hashing
- For disk-based data
- Combine with B-tree directory if needed

Dictionary ADT Wrapup: Case Study

- Your company, Procrastinators Inc., will release its highly hyped word-processing program, WordMaster 2000 (yeah, they're a little behind the times), next month.
- Your highly successful alpha-test was marred by user requests for a spell-checker.
- Your mission: write and test a spell-checker module before WordMaster 2000 is released.
- For now, you only need to worry about the English language, although WordMaster 2000 is successful, you may need to port your spell-checker to other languages/character sets

Case Study: Assumptions

You will be given a spelling dictionary of English words - 30,000 words

- Static (ie, does not support adding user-supplied words yet)
- Arbitrary(ish) preprocessing time

Practical notes

- Almost all searches are successful-Why?
- Words average about 8 characters in length
$-30,000$ words at 8 bytes/word $\sim .25 \mathrm{MB}$
- There are many regularities in the structure of English words

Case Study:
 Design Considerations

Issues:

- Which data structure should we use?
- What are our design goals?

Possible Solutions?

