
1

CSE 326: Data Structures
More Hashing Techniques

Hannah Tang and Brian Tjaden
Summer Quarter 2002

Remember This List?

• How should we resolve collisions?
• What should the table size be?
• What should the hash function be?
• How well does hashing work in the real world?

– We’ll see a case study today!

Hashing Dilemma

Suppose your WorstEnemy 1) knows your hash function; 2) gets to
decide which keys to send you?

Faced with this enticing possibility, WorstEnemy decides to:
a) Send you keys which maximize collisions for your hash function.
b) Take a nap.

Moral: No single hash function can protect you!

Faced with this dilemma, you:
a) Give up and use a linked list for your Dictionary.
b) Drop out of software, and choose a career in fast foods.
c) Run and hide.
d) Proceed to the next slide, in hope of a better alternative.

Universal Hashing1

Suppose we have a set K of
possible keys, and a finite
set H of hash functions that
map keys to entries in a
hashtable of size m.

1Motivation: see previous slide (or visit http://www.burgerking.com/jobs)

Definition:
H is a universalcollection of hash functions if and only if …

For any two keys k1, k2 in K, there are at most |H|/m functions in H for which
h(k1) = h(k2).

• So … if we randomly choose a hash function from H, our chances of collision
are no more than if we get to choose hash table entries at random!

0
1

.

.

.

m-1

K

H

h

hi
hj

k2

k1

Random Hashing – Not!

How can we “randomly choose a hash function”?
– Certainly we cannot randomly choose hash functions at runtime,

interspersed amongst the inserts, finds, deletes! Why not?

• We can, however, randomly choose a hash function each
time we initialize a new hashtable.

Conclusions
– WorstEnemy never knows which hash function we will choose –

neither do we!
– No single input (set of keys) can always evoke worst-case behavior

Good Hashing:
Universal Hash Function A (UHFa)

Parameterized by prime table size and vector of r integers:

a = <a 1 … ar> where 0 <= ai < size

Represent each key as a vector k of r integers, where ki < size
– size = 11, key = 39752 ==> <3,9,7,5,2>

– size = 29, key = “hello world” ==>
<8,5,12,12,15,23,15,18,12,4>

ha(k) = sizeka
r

i
ii mod

0








 ∑
=

2

UHFa: Example

• Context: hash strings of length 3 in a table of size 131

let a = <35, 100, 21>

ha(“xyz”) = (35*120 + 100*121 + 21*122) % 131
= 129

Let b = <25, 90, 83>

hb(“xyz”) = (25*120 + 90*121 + 83*122) % 131
= 43

Thinking about UHFa

Strengths:
– Works on any type as long as you can map keys to

vectors
– If we’re building a static table, we can try many values

of the hash vector <a>
– Random<a>has guaranteed good properties no matter

what we’re hashing

Weaknesses:
– Must choose prime table size larger than any ki

Good Hashing:
Universal Hash Function B (UHFb)

Parameterized by j, a, and b:
– j * size should fit into an int

– a and b must be less than size

hj,a,b(k) = ((ak + b) mod (j*size))/j

UHFb : Example
Context: hash integers in a table of size 160

Let j = 32, a = 13, b = 142
hj,a,b(1000) = ((13*1000 + 142) % (32*160)) / 32

= (13142 % 5120) / 32
= 2902 / 32
= 90

Let j = 31, a = 82, b = 112
hj,a,b(1000) = ((82*1000 + 112) % (31*160)) / 31

= (82112 % 4960) / 31
= 2752 / 31
= 89

Thinking about UHFb
Strengths

– If we’re building a static table, we can try many parameter
values

– Randoma,b has guaranteed good properties no matter
what we’re hashing

– Can choose any size table
– Very efficient if j and size are powers of 2 - why?

Weaknesses
– Need to turn non-integer keys into integers

Perfect Hashing

When we know the entire key set in advance …
– Examples: programming language keywords, CD -ROM

file list, spelling dictionary, etc.

… then perfect hashing lets us achieve:
– Worst-case O(1) time complexity!
– Worst-case O(n) space complexity!

3

Perfect Hashing Technique
• Static set of n known keys
• Separate chaining, two-level hash
• Primary hash table size=n
• jth secondary hash table size=nj

2

(where nj keys hash to slot j in primary
hash table)

• Universal hash functions in all hash
tables

• Conduct (a few!) random trials, until
we get collision-free hash functions

3

2

1

0

6

5

4

Primary hash table

Secondary hash tables

Perfect Hashing Theorems2

Theorem: If we store n keys in a hash table of size n 2 using a randomly chosen
universal hash function, then the probability of any collision is < ½.

Theorem: If we store n keys in a hash table of size m=n using a randoml y chosen
universal hash function, then

where n j is the number of keys hashing to slot j.

Corollary : If we store n keys in a hash table of size m=n using a randoml y chosen
universal hash function and we set the size of each secondary hash table to mj=nj

2,
then:

a) The probability that the total storage used for all secondary hash tables exceeds 4n is less than ½.
b) The expected amount of storage required for all secondary hash t ables is less than 2n.

nE
m

j
jn 2

1

0

2 <






∑
−

=

2Intro to Algorithms, 2 nd ed. Cormen,
Leiserson , Rivest, Stein

Perfect Hashing Conclusions
Perfect hashing theorems set tight expected bounds on sizes and
collision behavior of all the hash tables (primary and all
secondaries).

à Conduct a few random trials of universal hash functions, by
simply varying UHF parameters, until we get a set of UHFs and
associated table sizes which deliver …

– Worst-case O(1) time complexity!
– Worst-case O(n) space complexity!

Extendible Hashing:

Cost of a Database Query

I/O to CPU ratio is 300-to-1!

Extendible Hashing
Hashing technique for huge data sets

– Optimizes to reduce disk accesses
– Each hash bucket fits on one disk block

– Better than B-Trees if order is not important – why?

Table contains:
– Buckets, each fitting in one disk block, with the data
– A directory that fits in one disk block is used to hash to

the correct bucket

001 010 011 110 111101

Extendible Hash Table
• Directory entry: key prefix (first k bits) and a pointer to the bucket with all

keys starting with its prefix
• Each bucket contains keys matching on first j ≤ k bits, plus the value

associated with each key

000 100

(j = 2)
00001
00011
00100
00110

(j = 2)
01001
01011
01100

(j = 3)
10001
10011

(j = 3)
10101
10110
10111

(j = 2)
11001
11011
11100
11110

directory for k = 3

4

Inserting (easy case)

001 010 011 110 111101000 100

(2)
00001
00011
00100
00110

(2)
01001
01011
01100

(3)
10001
10011

(3)
10101
10110
10111

(2)
11001
11011
11100
11110

insert(11011)

001 010 011 110 111101000 100

(2)
00001
00011
00100
00110

(2)
01001
01011
01100

(3)
10001
10011

(3)
10101
10110
10111

(2)
11001
11100
11110

Splitting a Leaf
001 010 011 110 111101000 100

(2)
00001
00011
00100
00110

(2)
01001
01011
01100

(3)
10001
10011

(3)
10101
10110
10111

(2)
11001
11011
11100
11110

insert(11000)

001 010 011 110 111101000 100

(2)
00001
00011
00100
00110

(2)
01001
01011
01100

(3)
10001
10011

(3)
10101
10110
10111

(3)
11000
11001
11011

(3)
11100
11110

Splitting the Directory

1. insert(10010)
But, no room to insert and
no adoption!

2. Solution: Expand directory

3. Then, it’s just a normal split.

01 10 1100

(2)
01101

(2)
10000
10001
10011
10111

(2)
11001
11110

001 010 011 110 111101000 100

If Extendible Hashing Doesn’t Cut It

Store only pointers/references to the items: (key, value) pairs are
in disk
+ (Potentially) much smaller M
+ Fewer items in the directory
– One extra disk access!

Rehash
+ Potentially better distribution over the buckets
+ Fewer unnecessary items in the directory
– Can’t solve the problem if there’s simply too much data

What if these don’t work?
– Use a B-Tree to store the directory!

Hash Wrap-up

Collision resolution
• Separate Chaining

– Expand beyond hashtable via
secondary Dictionaries

– Allows λ > 1

• Open Addressing
– Expand within hashtable

– Secondary probing: {linear,
quadratic, double hash}

– λ ≤ 1 (by definition!)

– λ ≤ ½ (by preference!)

Choosing a Hash Function
• Universal hashing

– Guarantees no (always) bad
input

• Perfect hashing
– Requires known, fixed keyset
– Achieves O(1) time, O(n) space

- guaranteed!

Hash function: maps keys to integers; table size should be prime

•Rehashing
–Tunes up hashtable when λ crosses the line

Hash Wrap-up (part 2)

• Also: Extendible hashing
– For disk-based data
– Combine with B-tree directory if needed

5

Dictionary ADT Wrapup:
Case Study

• Your company, Procrastinators Inc., will release its highly
hyped word -processing program, WordMaster2000 (yeah,
they’re a little behind the times), next month.

• Your highly successful alpha-test was marred by user
requests for a spell-checker.

• Your mission: write and test a spell -checker module before
WordMaster2000 is released.

• For now, you only need to worry about the English
language, although WordMaster2000 is successful, you may
need to port your spell-checker to other languages/character
sets.

Case Study: Assumptions

You will be given a spelling dictionary of English words
– 30,000 words
– Static (ie, does not support adding user-supplied words yet)

– Arbitrary(ish) preprocessing time

Practical notes
– Almost all searches are successful – Why?

– Words average about 8 characters in length
– 30,000 words at 8 bytes/word ~ .25 MB

– There are many regularities in the structure of English
words

Case Study:
Design Considerations

Issues:
– Which data structure should we use?

– What are our design goals?

Possible Solutions?

