CSE 326: Data Structures
More Hashing Techniques

Hannah Tang and Brian Tjaden
Summer Quarter 2002

Remember ThisList?

¢ What should the hash function be?
¢ How well does hashing work in the real world?
— We'll see acase study today!

Hashing Dilemma

Supposeyour WorstEnemy 1) knows your hash function; 2) getsto
decide which keysto send you?

Faced with thisenticing possibility, WorstEnemy decides to:
@ Send you keys which maximize collisions for your hash function.
b) Takeanap.

Moral: No single hash function can protect you!

Faced with thisdilemma, you:
8@ Giveup and use alinked list for your Dictionary.
b) Drop out of software, and choose a career in fast foods.
¢) Runand hide.
d) Proceed to the next slide, in hope of abetter alternative.

Universal Hashing!

0
(E 1
Suppose we have asetK of | ¢
possible keys, and afinite K

set H of hash functions that m-1
map keysto entriesina @
hashtable of size m. H

Definition;

H isauniversal collection of hash functionsif and only if ...
For any two keysk;, k, in K, there areat most |H|/m functionsin H for which
h(k)) = h(k;).

* S0 ... if werandomly choose ahash function from H, our chances of collision
are no more than if we get to choose hash table entries at randam!

I\otivation: see previous slide (or visit http://www.burgerking.com/jobs)

Random Hashing — Not!

How can we “randomly choose a hash function” ?
— Certainly we cannot randomly choose hash functionsat runtime,
interspersed amongst the inserts, finds, deletes! Why not?

* Wecan, however, randomly choose a hash function each
timeweinitialize a new hashtable.

Conclusions

— WorstEnemy never knows which hash function we will choose—
neither do we!

— No single input (set of keys) can always evoke worst-case behavior

Good Hashing:
Universal Hash Function A (UHF)

Parameterized by prime table size and vector of r integers:
a=<a, ... 3> where0<=g <size

Represent each key as avector k of r integers, wherek; < size
— size=11, key = 39752 ==><3,9,7,5,2>

— size=29, key = “helloworld” ==>
<8,5,12,12,15,23,15,18,12,4>

hak) = TH ak Smodsize
ei=0]

UHF,: Example
« Context: hash strings of length 3in atable of size 131

let a= <35, 100, 21>
hy(“xyz’) = (35*120 + 100* 121 + 21*122) % 131
=129

Letb=<25, 90, 83>
hy(“Xyz") = (25% 120 + 90* 121 + 83*122) % 131
=43

Thinking about UHF,

Strengths:

— Workson any type as long as you canmap keys to
vectors

— If we're building a static table, we can try many values
of the hash vector <a>

— Random<a> has guaranteed good properties no matter
what we' re hashing

Weaknesses:
— Must choose prime table size larger than any k;

Good Hashing:
Universal Hash Function B (UHF,)

Parameterized by j, a, and b:
— j * size should fit into ani nt
— aand b must be less thansize

hi a6(k) = ((ak + b) mod (j*size))/]

UHF, : Example
Context: hash integersin atable of size 160

Letj=32,a=13,b=142

h; .5(1000) = ((13+1000 + 142) % (32¢160)) / 32
= (13142 %5120) / 32
=2002/32
=90

Letj=31,a=82b=112

h;.,5(1000) = ((82* 1000 + 112) % (31*160)) / 31
= (82112 % 4960) / 31
=2752/31
=89

Thinking about UHF,
Strengths

— If we're building a static table, we can try many parameter
values

— Randoma,b has guaranteed good properties no matter
what we' re hashing

— Can choose any sizetable
— Very efficientif j and size are powers of 2- why?

Weaknesses
— Need to turn non-integer keysinto integers

Perfect Hashing

When we know the entire key set in advance ...
— Examples: programming language keywords, CD -ROM
filelist, spelling dictionary, etc.

... then perfect hashing lets us achieve:
— Worst-case O(1) time complexity!
— Worst-case O(n) space complexity!

Perfect Hashing Technique

¢ Static set of nknown keys 0

* Separate chaining, two-evel hash 1

* Primary hashtablesize=n

* j™Msecondary hashtablesize=n?
(wheren keyshash to slot j in primary
hash table)

¢ Universa hash functionsin al hash
tables

« Conduct (afew!) random trials, until
weget collision-free hash functions Primary hash table

Secondary hash tables

o g A W N

Perfect Hashing Theorems?

Theorem: If we store n keysin ahash table of sizen2using a randomly chosen
universal hash function, then the probability of any collision is < %2,

Theorem: If we store n keysin a hash table of sizem=n using arandoml y chosen
universa hash function, then

&%t LU
Eza nfa <2n
&0 0
where n; is the number of keys hashing to slot j.

m%ﬁ we store n keys in a hash table of size m=n using arandoml y chosen
universal hash function and we set the size of each secondary hash table to n]:nf,
then:
a) Theprobability that the total storage used for al secondary hash tables exceeds 4nislessthan %
b) The expected amount of storage required for al secondary hash tables is less than 2n.

?Intro to Aigorithms 2" ed. Cormen ,
Leiserson, Rivest, Stein

Perfect Hashing Conclusions

Perfect hashing theorems set tight expected bounds on sizes and
collision behavior of all the hash tables (primary and all
secondaries).

- Conduct afew random trials of universal hash functions, by
simply varying UHF parameters, until we get aset of UHFs and
associated table sizeswhich deliver ...

— Worst-case O(1) time complexity!

— Worst-case O(n) space complexity!

Extendible Hashing:
Cost of a Database Query

W Tasnn Tomrmaes Torg

Extendible Hashing

Hashing technique for huge data sets
— Optimizesto reduce disk accesses
— Each hash bucket fits on one disk block
— Better than B-Treesif order is not important—why?

Table contains:
— Buckets, each fitting in one disk block, with the data

— A directory that fitsin onedisk block is used to hash to
the correct bucket

Extendible Hash Table

« Directory entry:key prefix (firstk bits) and a pointer to the bucket with all
keys starting with its prefix
« Eachbucket containskeys matching onfirstj £ k bits, plus the value

associated with each key
directfry for I; =3
.. . A LA .Y 4
(=2 (i=2 (=3 (=3 (i=2
00001 01001 10001 10101 11001
00011 01011 10011 10110 11011
00100 01100 10111 11100

00110 11110

Inserting (easy case)

|ooo|001|01o|011|1oo|101|110|111
&]

@) @ [©) ®) [€)
00001 01001 10001 10101 11001
00011 01011 10011 10110 11100
00100 01100 10111 11110
00110

insert(llOll)&

|ooo|001|01o|011|1oo|101|110|111

@) @) ()
00001 01001 10001 10101
00011 01011 10011 10110
00100 01100 10111
00110

Splitting a L eaf

oo or o Jour Ji00 o1 fuo 1 |

(& 6} 3)
00001 01001 10001 10101 11001
00011 01011 10011 10110 11011
00100 01100 10111 11100
00110 11110
insert(11000) \
boo b01 blO bu |1oo |101 |110 |111 |
@ @ €] [€)) B
00001 101001 10001 10101 11000 11100
00011 101011 10011 10110 11001 11110
00100 101100 10111 11011
00110

Splitting the Directory

1. insert(10010) 00\/01 1’0 1

But, no room to insert and Y v

no adoption! 0521)01 1(5(2)2)0 11(%)01
2. Solution: Expand directory iggtﬁ 11110

3. Then,it'sjustanormal split. /T'\ mf\ A

If Extendible Hashing Doesn’t Cut It

Store only pointers/referencesto the items: (key, value) pairs are

indisk

+ (Potentialy) much smaller M

+ Fewer itemsin thedirectory

— Oneextradisk access!
Rehash

+ Potentially better distribution over the buckets

+ Fewer unnecessary itemsin the directory

— Can't solvethe problem if there’s simply too much data

Wheat if these don’t work?
— Use aB-Treeto store the directory!

Hash Wrap-up

Hash function: maps keys to integers; table size should be prime

Collision resolution Choosing a Hash Function
* Separate Chaining * Universal hashing
— Expand beyond hashtablevia — Guarantees no (always) bad
secondary Dictionaries input
— Allows| >1 « Perfect hashing
« OpenAddressing — Requiresknown, fixed keyset

— Expand withinhashtable — Achieves O(1) time, O(n) space
— Secondary probing: {linear, - guaranteed!
quadratic, double hash}
— | £1(by definition!)
— | £ % (by preference!)

*Rehashing
—Tunes up hashtablewhen| crosses the line

Hash Wrap-up (part 2)

e Also: Extendible hashing
— For disk-based data
— Combine with B-tree directory if needed

Dictionary ADT Wrapup:
Case Study

* Your company, Procrastinators Inc., will release its highly
hyped word-processing program, WordMaster 2000 (yeah,
they’re alittle behind the times), next month.

« Your highly successful alpha-test was marred by user
requests for a spell-checker.

* Your mission: write and test a spell -checker module before
WordMaster 2000 is rel eased.

« For now, you only need to worry about the English
language, althoughWordMaster 2000 is successful, you may
need to port your spell-checker to other languages/character
sets.

Case Study: Assumptions

Y ou will be given a spelling dictionary of English words
— 30,000 words
— Static (ie, does not support adding user-supplied wordsyet)
— Arbitrary(ish) preprocessing time

Practical notes
— Almost all searches are successful — Why?
— Words average about 8 charactersin length
— 30,000 words at 8 bytes/word ~ .25 MB

— There aremany regularitiesin the structure of English
words

Case Study:
Design Considerations

|ssues:
— Which data structure should we use?
— What are our design goals?

Possible Solutions?

