
1

CSE 326: Data Structures
Introduction

Hannah Tang and Brian Tjaden
Summer Quarter 2002

Today’s Outline

• Administrative Info
• Survey
• Overview of the Course
• What is an algorithm? ADT? Data structure?
• Stacks and queues

Course Information

• Instructors: Hannah Tang and Brian Tjaden
226C Sieg Hall
hctang@cs.washington.edu and tjaden@cs.washington.edu
Hannah’s office hours: Tuesday 10-11:00, Friday 1 -2:00
Brian’s office hours: Monday 1 -2:00, Thursday 1 -2:00

• Grader/Consultant extraordinaire:
Albert Wong awong@cs.washington.edu

• Text: Data Structures & Algorithm Analysis in C++, 2nd

edition, by Mark Allen Weiss
or

Data Structures & Algorithm Analysis in Java, by Mark Allen
Weiss

C++ or Java...

you make the call!

Course Assessment
• Homeworks or projects due each week

• Weekly written homework due at the start of class on the
due date

• Projects due by 10PM on the due date

• Quizzes each Thursday in section!!!
• Final Exam: August 23 in class!!!

• Grading
– homework: 20%

– projects: 30%
– quizzes: 20%

– final: 25%

– participation: 5%

Course Mechanics
• 326 Web page: http://www.cs.washington.edu/326
• 326 course directory: /cse/courses/cse326/02su
• 326 mailing lists

– announcement list: cse326announce
– discussion list: cse326

– extra topics list: cse326beyond
– subscribe to the mailing list using web interface, see homepage

• Course laboratories are 232 and 329 Sieg Hall
– labs have NT machines w/X servers to access UNIX

• All programming projects graded on UNIX

2

What is an Algorithm?

• ???

According to …

• According to Mirriam-Webster, an algorithm is …
– a procedure for solving a mathematical problem (as of

finding the greatest common divisor) in a finite number
of steps that frequently involves repetition of an
operation

– (broadly) a step-by-step procedure for solving a
problem or accomplishing some end especially by a
computer

• So …
– What’s the difference between an “algorithm” and a

“program?”

Concepts vs. Mechanisms
• Algorithm

– A sequence of high-level,
language independent
operations, which may act
upon an abstracted view
of data.

• Abstract Data Type
(ADT)
– A mathematical

description of an object
and the set of operations
on the object.

• Program
– A sequence of operations in a specific

programming language, which may
act upon real data in the form of
numbers, images, sound, etc.

– Each program must decide how to
store its data, and these choices
influence the program at every level:

• Execution speed
• Memory requirements
• Maintenance (debugging, extending,

etc)

• Data structure
– A specific way in which a program’s

data is represented, which reflects the
programmer’s design choices/goals.

ADT’s vs Data Structures
• List ADT

– Stack ADT
– Queue ADT

• Collection ADT
– Stores objects without

duplicates

• Dictionary ADT
– Stores (Key, Value) pairs
– Alternatively: Maps Keys to

Values
• Priority Queue ADT

– Stores objects, and supports
efficient removal of objects
based upon some kind of
ordering

• Graph ADT
• … and even more!

• Linked List
• Circular Array
• Binary Search Tree
• Splay Tree
• Hash Table
• Leftist Heap
• Skew Heap
• Adjacency Matrix

• … and lots more!

So … which ADT’s do these
data structures implement?

Why So Many Data Structures?

Ideal data structure:
“fast”, “elegant”, memory efficient

Generates tensions:
– time vs. space

– performance vs. elegance
– generality vs. simplicity

– one operation’s performance vs. another’s

The study of data structures is the study of
tradeoffs. That’s why we have so many of them!

Goals of the Course

• Learn some of the fundamental data structures in computer
science
– And understand their tradeoffs!

• Learn to see and solve problems abstractly
– Be able to see the intrinsic problem behind real-world scenarios, or

vice versa, be able to realize an abstract solution in the real world
– Data structures are your problem-solving building blocks!

• Learn to analyze and improve algorithms
– Prove correctness
– Gauge and improve time complexity

• Become modestly skilled with the UNIX operating system
• Appreciate that all languages are not created equal...

3

Learning Concepts vs. Learning Code

CSE 326 balances concepts with mechanisms
– Grade is 65% concepts and plans, 30% coding skill, but …
– Coding greatly improves grasp of concepts and plans

Different approaches
– Weiss is code-centric: emphasizes mechanisms
– Introduction to Algorithms by Cormen, Leiserson, Rivest is

pseudocode-centric: emphasizes concepts
– The Art of Computer Programming (1968-1973) by Donald

Knuth emphasizes concepts and mechanisms
• Examples in assembly language (and English)!
• American Scientist ranks in top 12 books of century!

– Many, many more!

Translating Concepts Into Mechanisms

• In a perfect world …
– An interface (or abstract base class) describes ADT
– Inherited classes implement data structures

– Can change data structures transparently (to client code)

• In the real world …
– Different implementations sometimes suggest different

interfaces (generality vs. simplicity)

– Performance of a data structure may influence form of client
code (time vs. space, one operation vs. another)

Data Structure Presentation Algorithm
• Present data structure
• Motivate with some applications
• Repeat until you see visions of the data structure in your sleep

– Determine which ADT’s this data structure can implement
– Analyze its properties

• Efficiency
• Correctness
• Limitations
• Ease of programming

• Contrast data structure’s strengths and weaknesses
– Understand when to use each one

And now, the moment you’ve been waiting for:
Your first ADT!

Queue ADT

• Queue operations
– create
– destroy

– enqueue
– dequeue

– is_empty

• Queue property: if x is enQed before y is enQed,
then x will be deQed before y is deQed
FIFO: First In First Out

F E D C Benqueue dequeueG A

Applications of the Q

• Hold jobs for a printer
• Store packets on network routers
• Hold memory “ freelists”
• Make waitlists fair
• Breadth first search

Circular Array Q Data Structure

void enqueue(Object x) {
Q[back] = x
back = (back + 1) % size

}
Object dequeue() {

x = Q[front]
front = (front + 1) % size
return x

}

b c d e f

Q
0 size - 1

front back

bool is_empty() {
return (front == back)

}

bool is_full() {
return front ==

(back + 1) % size
}

4

Q Example

enqueue R

enqueue O
dequeue

enqueue T
enqueue A

enqueue T
dequeue

dequeue
enqueue E

dequeue

Linked List Q Data Structure

b c d e f

front back

void enqueue(Object x) {
if (is_empty())

front = back = new Node(x)
else

back->next = new Node(x)
back = back->next

}

Object dequeue() {
assert(!is_empty)
return_data = front->data
temp = front
front = front->next
delete temp

return temp->data
}
bool is_empty() {

return front == null
}

Circular Array vs. Linked List LIFO Stack ADT

• Stack operations
– create
– destroy
– push
– pop
– top
– is_empty

• Stack property: if x is on the stack before y is
pushed, then x will be popped after y is popped
LIFO: Last In First Out

A

B
C
D
E
F

E D C B A

F

Stacks in Practice

• Function call stack
• Removing recursion
• Balancing symbols (parentheses)
• Evaluating Reverse Polish Notation
• Depth first search

Array Stack Data Structure

S
0 size - 1
f e d c b

void push(Object x) {
assert(!is_full())
S[back] = x
back++

}
Object top() {

assert(!is_empty())
return S[back - 1]

}

back

Object pop() {
back--
return S[back]

}
bool is_empty() {

return back == 0

}
bool is_full() {

return back == size
}

5

Linked List Stack Data Structure

b c d e f

back

void push(Object x) {
temp = back
back = new Node(x)
back->next = temp

}
Object top() {

assert(!is_empty())
return back->data

}

Object pop() {
assert(!is_empty())
return_data = back ->data
temp = back
back = back->next
return return_data

}
bool is_empty() {

return back == null
}

Data structures you should
already know

• Arrays
• Linked lists
• Queues
• Stacks

To Do

• Check out the web page
• Come to the Unix tutorial tommorrow (Tuesday,

June 25), Sieg 322, 4:30-5:30
• Sign up on the cse326 mailing lists
• Log on to the PCs in rooms232 or 329 and access

an instructional UNIX server
• Read Chapters 2 and 3 in the book
• Project 1 due this Monday, July 1!

