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A Dijkstra-Like Scenario

Y our company owns addivery truck that will have to make many
tripsin aday to various warehouses, aways starting at warehouse A
and ending at warehouse B. However, it will never repeat visit the
same warehouse twice in one day. Because of demand, you cannot
waste time refueling the truck until it reaches B. Thetruck can
travel a most K mileson asinge tank of gas. You aregiven a
graph where the nodes represent the warehouses and the directed
edges represent the highways connecting the two warehouses. Each
edge is weighted according to the length of that highway.

Asyou want your drivers to avoid taking paths of longer than K
miles, design an algorithm that tells you if there exists any simple
path from A to B (no nodes/warehouses repeated) whose length is
greater than K miles.

Whoops, That's REALLY Hard

» Longest Path is an NP-Complete problem.

» No known polynomial -time algorithm solvesiit.
— A poly-time agorithm does exist for DAGS.

» Thisisadifficult problem for even small graphs.

Huge Graphs

» Consider some really huge graphs...
— All cities and townsin the World Atlas
— All starsin the Ga axy
— All ways 10 blocks can be stacked
Huh???

Implicitly Generated Graphs

A huge graph may be implicitly specified by rules for
generating it on-the-fly

 Blocks world:
— vertex = relative positions of all blocks
— edge = robot arm stacks one block
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Blocks World

¢ Source = initial state of the blocks
Goal = desired state of the blocks

* Path source to goal = sequence of actions
(program) for robot arm!

* nblocks~ n" vertices
10 blocks ~ 10 hillion vertices!




Problem: Branching Factor

» Cannot search such huge graphs exhaustively.
Suppose we know the goal is only d steps away.

« Dijkstra s algorithm is basically breadth-first
search (modified to handle arc weights)

 Breadth-first search (or for weighted graphs,
Dijkstra’ s algorithm) — If out-degree of each node
is 10, potentially visits 109 vertices
— 10 step plan = 10 hillion vertices visited!

An Easier Case

* Suppose you live in Manhattan; what do you do?
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Best-First Search

* The Manhattan distance (A x+ A'y) is an estimate
of the distance to the goal
— aheuristic vdue
* Best-First Search
— Order nodes in priority to minimize estimated distance
to the goa h(n)
» Compare: BFS/ Dijkstra

— Order nodesin priority to minimize distance from the
start

Best First in Action

* Suppose you live in Manhattan; what do you do?
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Problem 1: Led Astray

» Eventually will expand vertex to get back on the
right track
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Problem 2: Optimality

» With Best-First Search, are you guaranteed a
shortest path is found when
— godl isfirst seen?
— when goal isremoved from priority queue (as with
Dijkstra?)




Sub-Optimal Solution

* No! Goal isby definition at distance O: will be
removed from priority queue immediately, even if
a shorter path exists!

(5 blocks)

Synergy?

« Dijkstra/ Breadth First guaranteed to find optimal
solution

» Best First often visits far fewer vertices, but may
not provide optimal solution

— Can we get the best of both?
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Heuristics

A rule of thumb, simplification, or educated guess.

» Reduces the search for solutions in large solution
spaces

* Unlike algorithms, heuristics do not guarantee
optimal, or even feasible, solutions.

A* (“A star”)

 Order vertices in priority queue to minimize
(distance from start) + (estimated distance to goal)

f(n = g(n) + h(n)
f(n) = priority of anode

g(n) = true distance from start
h(n) = heuristic distance to goal

Optimality
* Suppose the estimated distance (h) is
always less than or equal to the true distance to the
goa
— heuristic isalower bound on true distance

* Then: when the goal is removed from the priority
queue, we are guaranteed to have found a shortest

path!

Problem 2 Revisited
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Problem 2 Revisited

Problem 2 Revisited
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What Would Dijkstra Have
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Proof of A* Optimality

A* terminates when G is popped from the heap.

Suppose G is popped but the path found isn’t optimal:
priority(G) > optimal path length ¢

Let P be an optima path from Sto G, and let N be the last

vertex on that path that has been visited but not yet popped.

There must be such an N, otherwise the optimal path would have been
found.

priority(N) = g(N) + h(N) <c
So N should have popped before G can pop. Contradiction.

non-optimal path to G

>

undiscovered portion
@ of shortest path

portion of optimal
path found so far

What About Those Blocks?
» “Digtanceto goal” is not always physical distance
» Blocksworld:

— distance = number of stacksto perform
— heuristic lower bound = number of blocks out of place

I R

#out of place= 1, truedistanceto god =3

Other Real-World Applications

Routing finding — computer networks, airline
route planning

VLSI layout — cell layout and channel routing
Production planning — “just in time” optimization
Protein sequence alignment

Many other “NP-Hard” problems

— A class of problems for which no exact polynomia
time a gorithms exist — so heuristic search is the best
we can hope for




