
1

Heuristic Graph Search:
Another Reason AI is Cool

Nick Deibel

Quiz Section – 5/31/02

A Dijkstra-Like Scenario
Your company owns a delivery truck that will have to make many
trips in a day to various warehouses, always starting at warehouse A
and ending at warehouse B. However, it will never repeat visit the
same warehouse twice in one day. Because of demand, you cannot
waste time refueling the truck until it reaches B. The truck can
travel at most K miles on a single tank of gas. You are given a
graph where the nodes represent the warehouses and the directed
edges represent the highways connecting the two warehouses. Each
edge is weighted according to the length of that highway.

As you want your drivers to avoid taking paths of longer than K
miles, design an algorithm that tells you if there exists any simple
path from A to B (no nodes/warehouses repeated) whose length is
greater than K miles.

Whoops, That’s REALLY Hard

• Longest Path is an NP-Complete problem.

• No known polynomial-time algorithm solves it.
– A poly-time algorithm does exist for DAGS.

• This is a difficult problem for even small graphs.

Huge Graphs
• Consider some really huge graphs…

– All cities and towns in the World Atlas

– All stars in the Galaxy

– All ways 10 blocks can be stacked

Huh???

Implicitly Generated Graphs

• A huge graph may be implicitly specified by rules for
generating it on-the-fly

• Blocks world:
– vertex = relative positions of all blocks
– edge = robot arm stacks one block

stack(blue,red)

stack(green,red)

stack(green,blue)

stack(blue,table)

stack(green,blue)

Blocks World

• Source = initial state of the blocks

• Goal = desired state of the blocks

• Path source to goal = sequence of actions
(program) for robot arm!

• n blocks � nn vertices

• 10 blocks � 10 bill ion vertices!

2

Problem: Branching Factor

• Cannot search such huge graphs exhaustively.
Suppose we know the goal is only d steps away.

• Dijkstra’s algorithm is basically breadth-first
search (modified to handle arc weights)

• Breadth-first search (or for weighted graphs,
Dijkstra’s algorithm) – If out-degree of each node
is 10, potentially visits 10d vertices
– 10 step plan = 10 billion vertices visited!

An Easier Case

• Suppose you live in Manhattan; what do you do?

52nd St

51st St

50th St

10
th

A
ve

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

3
rd

A
ve

2
nd

A
ve

S

G

Best-First Search

• The Manhattan distance (� x+ � y) is an estimate
of the distance to the goal
– a heuristic value

• Best-First Search
– Order nodes in priority to minimize estimated distance

to the goal h(n)

• Compare: BFS / Dijkstra
– Order nodes in priority to minimize distance from the

start

Best First in Action

• Suppose you live in Manhattan; what do you do?

52nd St

51st St

50th St

10
th

A
ve

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

3
rd

A
ve

2
nd

A
ve

S

G

Problem 1: Led Astray

• Eventually will expand vertex to get back on the
right track

52nd St

51st St

50th St

10
th

A
ve

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

3
rd

A
ve

2
nd

A
ve

S G

Problem 2: Optimality

• With Best-First Search, are you guaranteed a
shortest path is found when
– goal is first seen?

– when goal is removed from priority queue (as with
Dijkstra?)

3

Sub-Optimal Solution
• No! Goal is by definition at distance 0: will be

removed from priority queue immediately, even if
a shorter path exists!

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

h=2

h=1
h=4

h=5

Synergy?

• Dijkstra / Breadth First guaranteed to find optimal
solution

• Best First often visits far fewer vertices, but may
not provide optimal solution

– Can we get the best of both?

Heuristics

• A rule of thumb, simplification, or educated guess.

• Reduces the search for solutions in large solution
spaces

• Unlike algorithms, heuristics do not guarantee
optimal, or even feasible, solutions.

A* (“A star”)

• Order vertices in priority queue to minimize

(distance from start) + (estimated distance to goal)

f(n) = g(n) + h(n)

f(n) = priority of a node

g(n) = true distance from start

h(n) = heuristic distance to goal

Optimality
• Suppose the estimated distance (h) is

always less than or equal to the true distance to the
goal

– heuristic is a lower bound on true distance

• Then: when the goal is removed from the priority
queue, we are guaranteed to have found a shortest
path!

Problem 2 Revisited

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

50th St

55052nd & 9th

f(n)h(n)g(n)vertex

4

Problem 2 Revisited

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

50th St

54151st & 9th

72552nd & 4th

f(n)h(n)g(n)vertex

Problem 2 Revisited

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

50th St
75250th & 9th

53251st & 8th

72552nd & 4th

f(n)h(n)g(n)vertex

Problem 2 Revisited

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

50th St
74350th & 8th

75250th & 9th

52351st & 7th

72552nd & 4th

f(n)h(n)g(n)vertex

Problem 2 Revisited

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

50th St

73450th & 7th

74350th & 8th

75250th & 9th

51451st & 6th

72552nd & 4th

f(n)h(n)g(n)vertex

Problem 2 Revisited

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

50th St

73450th & 7th

74350th & 8th

75250th & 9th

50551st & 5th

72552nd & 4th

f(n)h(n)g(n)vertex

Problem 2 Revisited

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

50th St
73450th & 7th

74350th & 8th

75250th & 9th

72552nd & 4th

f(n)h(n)g(n)vertex

DONE!

5

What Would Dijkstra Have
Done?

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

50th St

49th St

48th St

47th St

Proof of A* Optimality

• A* terminates when G is popped from the heap.
• Suppose G is popped but the path found isn’t optimal:

priority(G) > optimal path length c

• Let P be an optimal path from S to G, and let N be the last
vertex on that path that has been visited but not yet popped.
There must be such an N, otherwise the optimal path would have been

found.
priority(N) = g(N) + h(N) � c

• So N should have popped before G can pop. Contradiction.

S

N

G
non-optimal path to G

portion of optimal
path found so far

undiscovered portion
of shortest path

What About Those Blocks?

• “Distance to goal” is not always physical distance

• Blocks world:
– distance = number of stacks to perform

– heuristic lower bound = number of blocks out of place

out of place = 1, true distance to goal = 3

Other Real-World Applications

• Routing finding – computer networks, airline
route planning

• VLSI layout – cell layout and channel routing
• Production planning – “ just in time” optimization
• Protein sequence alignment
• Many other “NP-Hard” problems

– A class of problems for which no exact polynomial
time algorithms exist – so heuristic search is the best
we can hope for

