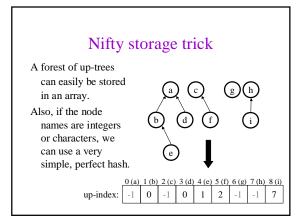
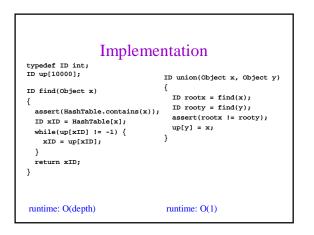
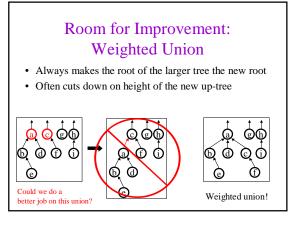
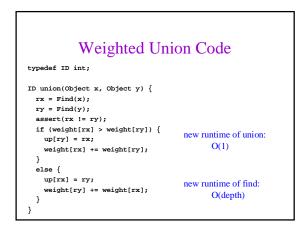


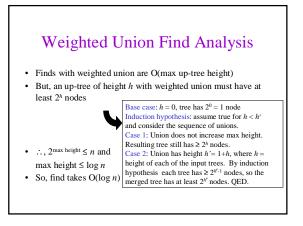
A poorly named rehash of a Winter 2002 lecture Nick Deibel

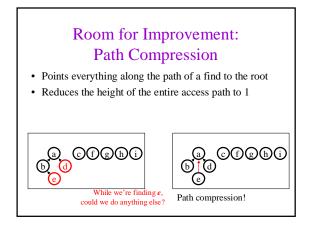


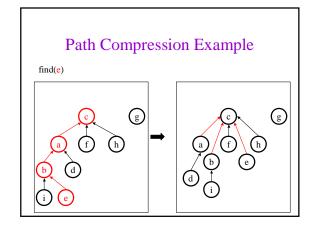


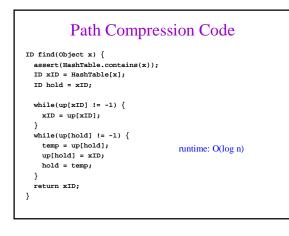












Digression: Inverse Ackermann's

Let $\log^{(k)} n = \log (\log (\log \dots (\log n)))$

 $k \log s$

Then, let log* n = minimum k such that log^(k) n ≤ 1 *How fast does log** n grow? log* (2) = 1 log* (4) = 2 log* (16) = 3 log* (65536) = 4 log* (2⁶⁵⁵³⁶) = 5 (a 20,000 digit number!) log* (2⁶⁵⁵³⁶) = 6

Complex Complexity of Weighted Union + Path Compression • Tarjan (1984) proved that *m* weighted union and

• Tarjan (1964) proved that *m* weighted union and find operations with path commpression on a set of *n* elements have worst case complexity $O(m \cdot \log^*(n))$

actually even a little better!

• For **all** practical purposes this is amortized constant time