CSE 326 Quiz Section Memory Use of Sorting Algorithms

April 11, 2002

Example Memory Hierarchy Statistics

Name	Extra CPU cycles used to access	Size		
L1 (on chip) cache	0	32 KB		
L2 cache	8	512 KB		
RAM	35	256 MB		
Hard Drive	500,000	8 GB		

The Memory Hierarchy Exploits Locality of Reference

- Idea: *small* amount of *fast* memory
- Keep *frequently* used data in the *fast* memory
- LRU replacement policy
 - Keep recently used data in cache
 - To free space, remove Least Recently Used data

			_	\square
			+	

Conclusions

- Speed of cache, RAM, and external memory has a huge impact on sorting (and other algorithms as well)
- Algorithms with same asymptotic complexity may be best for different kinds of memory
- Tuning algorithm to improve cache performance can offer large improvements (iterative vs. tiled mergesort)

13