
1

Unix Tutorial Slides - Templates

CSE 326 Quiz Section

April 4, 2002

With much thanks to the UW ACM

C++ Templates - Introduction

• Templates are cookie-cutters with which the compiler
generates real C++ code. Templates themselves do not exist.

• When a template is used, (that is, specialized for a specific
type), it get instantiated. This is when actual machine code is
generated.

• The instantiation creates a version of the template where each
placeholder is replaced by its specialization. At this point,
the specific version of the template comes into existence and
can be compiled. It does not exist otherwise!

• In a very real way, a template just does a search and replace
for each type you specialize the template for. It’s just done
for you, behind your back.

These template slides are freely
stolen from Albert Wong (awong@cs)

http://www.cs.washington.edu/orgs/acm

C++ Templates - Problems
• Problem:

– Because templates do not really exist, they don’ t exist to the
compiler until they are instantiated!

• Effects:
– Template code will not get compiled until it is used (ie,

instantiated). Thus, the compiler will not catch syntax errors
until the template is used!

– A specialization (a place where the template is actually used)
instantiates all relevant templated code before it.

• If templated code occurs in a different file, it will not get instantiated
by that specialization.

• If templated code occurs later in the same file, it will not get
instantiated by that specialization.

– Worse yet: implicit template instantiation
• Only explicitly used templated code will be instantiated.
• Thus, if templated code occurs in the same file and before the template

specialization, it still will not get instantiated by that implicit
specialization!

C++ Templates - Possible Problem I

• Unfortunately, yes. Although
b is undeclared, no warnings
or errors will be generated.

• It appears to “compile”
because nothing actually
instantiates the template, so the
compiler never sees the
template code.

/ * Ar r ay. hh * /
#i f ndef ARRAY_HH
#def i ne ARRAY_HH

t empl at e <t ypename T>
cl ass Ar r ay {

Ar r ay(i nt i) {
b = “ Hel l o Mom! ” ;

}
} ;

#endi f / * ARRAY_HH * /

Will this code compile?

C++ Templates - Possible Problem II

The link error happens at
a. Get Capaci t y()

• Nothing from a template gets
instantiated until it is either used or
explicitly instantiated.

• Ar r ay<i nt >: : Get Capaci t y()
is used at a. Get Capaci t y() , but
the function definition is not in this
file.

• The definition of the function is in
Array.cc, but it is never used there.

Thus the definition of
Ar r ay<i nt >: : Get Capaci t y()
never gets instantiated and
compiled to object code.

/ * mai n. cc * /
#i ncl ude <i ost r eam>
usi ng namespace st d;

#i ncl ude “ Ar r ay. hh”

i nt mai n(voi d) {
Ar r ay<i nt > a(10) ;

cout << a. Get Capaci t y()
<< endl ;

r et ur n 0;
}

Will this program link?

C++ Templates - Avoiding the Problems
• There are 3 conventions to avoiding template problems:

– Write all the code inline in the .h file
– Write the code in two files, but #include the implementation file

at the bottom of the .h (essentially the same as above)
– Write the templated class as you would with a normal class

(using a header and implementation file)
• Create a new source file and #include the implementation file there.
• Inside this new file, explicitly instantiate all your templates.
• This new instantiation file is the one that you compile, not the

implementation file.

• Advantages of the third method:
– It is not necessary to recompile all the code that uses the

template (just the template itself).
– The third method instantiates the entire templated class all at

once, removing potential link problems.

2

C++ Templates - The Safe Way

• To make the previously broken program link properly, explicitly instantiate an
integer version of the Array template.

• Remember, each specialization will require their own line in the instantiation file

• Compile line:
g++ - Wal l - ansi mai n. cc Ar r ayI nst . cc

The proper procedure
• Write the template, separated into a header and an implementation file
• Create an instantiation file for the template which includes the

implementation file.
• Compile the instantiation file and not the template implementation file.
• The instantiation file generates the object code for the template.

/ * Ar r ayI nst . cc * /
#i ncl ude “ Ar r ay. cc”

t empl at e Ar r ay<i nt >;
t empl at e Ar r ay<doubl e>;

This line forces the instantiation of the
Array class template (and all its member
functions), for i nt s.

