
1

Unix Tutorial Slides

CSE 326 Quiz Section

April 4, 2002

With much thanks to the UW ACM

IWS (Instructional Work Servers)
• There are 4 instructional Unix servers:

– ceyl on, f i j i , sumat r a, and t ahi t i

• Accessing the servers:
– Terminal Programs:

• telnet (insecure; cannot be used)
• ssh (via the TeraTerm or Putty programs from Windows)

– Start - > Program Files - > Desktop Tools - > TeraTerm

– File Transfer Programs
• ftp (insecure; cannot be used)
• \ \ <ser ver name>\ <user name> from Start -> Run menu

– e.g -- \ \ f i j i \ zanf ur

• Secure file transfer (from C&C)

– Xwindows
• Run xgo from the command prompt

• Come to the ACM tutorial! This tutorial provided by UW ACM
http://www.cs.washington.edu/orgs/acm/

Questions to jdeibel@cs, hctang@cs, zanfur@cs, awong@cs

Logging In

• Which server you use (almost) doesn’ t matter – all four
allow access to your files

• Although your Windows and Unix usernames (and
passwords) are the same, they are two separate
accounts
– Your z: drive is not your Unix account

• Connecting:
– We’ ll connect to the Unix machines via ssh

– After connection, you are presented with a login prompt

– After logging in, you’ re placed in your home directory
(where your personal files are located)

Setting Up Your Environment

• To set up your Unix environment, follow the
setup instructions on the first programming
project

• To get the full benefit of / uns , you can run the
/ uns/ exampl es/ set up- t ut or i al script

• It’ s a good idea to look at what’s in / uns/ bi n –
there are many useful tools there:
– xemacs

– ddd

– And much, much more …

The Command Prompt
• Commands are the way to “do things” in Unix
• A command consists of a command name and options called

“ flags”
• Commands are typed at the command prompt
• In Unix, everything (including commands) is case-sensitive

[pr ompt] $ <command> <f l ags> <ar gs>

f i j i : / u15/ awong$ l s –l - a uni x- t ut or i al

Command Prompt
Command

(Optional) flags

(Optional) arguments

Note: In Unix, you’re expected to know what you’re doing. Many
commands will print a message only if something went wrong.

Two Essential Commands

• The most useful commands you’ ll ever learn:
– man (short for “manual”)
– i nf o

• They help you find information about other commands
– man <cmd> or i nf o <cmd> retrieves detailed information

about <cmd>

– man –k <keywor d> searches the man page summaries
(faster, and will probably give better results)

– man –K <keywor d> searches the full text of the man pages

f i j i : / u15/ awong$ man –k passwor d
passwd (5) - passwor d f i l e
xl ock (1) - Locks t he l ocal X di spl ay

unt i l a passwor d i s ent er ed
f i j i : / u15/ awong$ passwd

2

Directories

• In Unix, files are grouped together in other files called
directories, which are analogous to folders in Windows

• Directory paths are separated by a forward slash: /
– Example: / u10/ j dei bel / c l asses/ cse326

• The hierarchical structure of directories (the directory
tree) begins at a special directory called the root, or /
– Absolute paths start at /

• Example: / u10/ j dei bel / c l asses/ cse326

– Relative paths start in the current directory
• Example: cl asses/ cse326 (if you’ re currently in / u10/ j dei bel)

• Your home directory is where your personal files are
located, and where you start when you log in.
– Example: / u10/ j dei bel

Directories (cont’d)

• Handy directories to know
~ Your home directory
.. The parent directory
. The current directory

• l s
– LiSts the contents of a specified files or directories

(or the current directory if no files are specified)
– Syntax: l s [<f i l e> …]
– Example: l s backups

• pwd
– Print Working Directory

Directories (cont’d further)
• cd

– Change Directory (or your home directory if unspecified)
– Syntax: cd <di r ect or y>

– Examples:
• cd backups/ uni x- t ut or i al

• cd . . / c l ass- not es

• mkdi r
– MaKe DIRectory
– Syntax: mkdi r <di r ect or i es>
– Example: mkdi r backups c l ass- not es

• r mdi r
– ReMove DIRectory, which must be empty
– Syntax: r mdi r <di r ect or i es>
– Example: r mdi r backups c l ass- not es

Files

• Unlike Windows, in Unix file types (e.g. “executable
files, ” “data files,” “ text files”) are not determined by
file extension (e.g. “ foo.exe” , “ foo.dat” , “ foo.txt”)

• Thus, the file-manipulation commands are few and
simple …

• r m

– ReMoves a file, without a possibility of “ undelete!”
– Syntax: r m <f i l e(s) >

– Example: r m t ut or i al . t xt backups/ ol d. t xt

Files (cont’d)

• cp

– CoPiesa file, preserving the original
– Syntax: cp <sour ces> <dest i nat i on>

– Example: cp t ut or i al . t xt t ut or i al . t xt . bak

• mv

– MoVes or renames a file, destroying the original
– Syntax: mv <sour ces> <dest i nat i on>

– Examples:
• mv t ut or i al . t xt t ut or i al . t xt . bak

• mv t ut or i al . t xt t ut or i al - sl i des. ppt backups/

Note: Both of these commands will over-write existing files
without warning you!

Shell Shortcuts
• Tab completion

– Type part of a file/directory name, hit <t ab>, and the shell will finish as
much of the name as it can

– Works if you’re running t csh or bash

• Command history
– Don’t re-type previous commands – use the up-arrow to access them

• Wildcards
– Special character(s) which can be expanded to match other file/directory

names
* Zero or more characters

? Zero or one character

– Examples:
• l s * . t xt

• r m may- ?- not es. t xt

3

Text - editing

• Which text editor is “ the best” is a holy war. Pick one and
get comfortable with it.

• Three text editors you should be aware of:
– pi co – Comes with pi ne (Dant e’ s email program)

– emacs/ xemacs – A heavily-featured editor commonly
used in programming (326 staff recommends this one)

– vi m/ vi – A lighter editor, also used in programming

• Get familiar with one as soon as possible!

Text - printing
• Printing:

– Use l pr to print

• Use –h (no header) and –Zdupl ex (double-sided) to save paper

– Check the print queue (including Windows print jobs!) with l pq

– l pr m to remove print jobs (including Windows print jobs)

– For the above commands, you’ ll need to specify the printer with
–P<pr i nt er name>

• Check out enscr i pt (quizlet: how do you find information about
commands?) to print text files nicely!
– WARNING: Do NOT use enscr i pt with postscript files!

Unix I/O

• Input:
– stdin: usually inputted through the keyboard, it is

equivalent to ci n in C++

• Output:
– stdout: usually sent to the monitor, it is equivalent to

cout in C++
– stderr: usually sent to the monitor, it is equivalent to

cer r in C++.

NOTE: It is good programming practice to use cer r
for error messages instead of cout .

Redirecting I/O

• Redirecting input: a.out < file
– a.out will read from the file using stdin (cin).

– This is as if the user was typing the contents of the file as
input.

• Redirecting output: a.out > file
– a.out will write any output from stdout to file.

– The file will be created if it does not already exist and
overwritten otherwise.

– Messages from stderr will not be written to the file.

• Piping: cmd1 | cmd2
– cause the stdout output of cmd1 to be sent as stdin input to

cmd2

The Unix Philosophy

• A large set of primitive tools, which can be put
together in an infinite number of powerful ways

• An example:
– Three separate tools are necessary to develop software:

• Text editor
• Compiler
• Debugger (You will need this, unless “ j00 R l33t”)

– MSVC is an “ IDE” (“ Integrated Development Environment”)
• All three tools are found in one shrink-wrapped box

– Although there are IDE’s for Unix, for this course, you will
most likely use (mostly) separate tools:

• Text editor: emacs/ xemacs or vi / vi m
• Compiler: g++

• Debugger: gdb This tutorial provided by UW ACM
http://www.cs.washington.edu/orgs/acm/

Questions to jdeibel@cs

Compilation with g++ 3.0

• There are actually three g++s installed on the
instructional machines
– Version 3.0.4 is the one we’ ll be using for 326
– Version 2.96 is the default

• To use the most current version, you need to call
uns- g++

• uns- g++ is located in /uns/bin, which is not part
of your standard Unix environment

• After running the course-setup script, g++ will
default to uns- g++

4

Compilation
• To compile a program:

– g++ <opt i ons> <sour ce f i l es>

– Recommended: g++ - Wal l –ansi - g –o <execut abl e_name> * . cpp
• - Wal l – Warnings: ALL
• - ansi – Strict ANSI compliance
• - g – Add debugging symbols to the executable (ie, make it debuggable!)
• Quizlet: what does * . cpp mean?

• What’s an “executable”?
– In Windows, double-clicking on an icon runs a program

• E.g. double-click on C: \ Wi ndows\ not epad. exe

– In Unix, you can run your executable from the command line!
• Type the executable name at the prompt, just like a command

– In fact, commands are actually executables

• However, you may need to specify the path to your executables
– . / <pr ogr am> runs <pr ogr am> in the current directory

• Example:
f i j i : ehsu% g++ - Wal l –ansi - g –o hel l o hel l o. cpp
f i j i : ehsu% . / hel l o

“Compilation” or “The Big Lie”
• Does this picture look familiar?
• These are the discrete steps to

program “compilation”
• Hitting the ‘ !’ button in MSVC or

typing a
“g++ * . cpp” to build (not
“compile”) your program hides all
these separate steps.

• Question: would you want to do
this entire process (ie, pre-process
and compile every file) every time
you wanted to generate a new
executable?

.h
.cpp

.h

compiler

linker
ANSI lib

compiler

.exe file

other libs

.cpp

Pre-proc Pre-proc

Selective Recompilation and Makefiles

• Answer:
– No. You only want to compile those files which were

changed (or were affected by a change in another file [quizlet:
when might this happen?]). We can reuse the .o/.obj files for
files which weren’t modified.

• You could do this yourself…
– g++ <opt i ons> <changed f i l es>

– g++ * . o

• But you could also use the make command and a
Makef i l e!
– Create a Makef i l e to keep track of file dependancies and

build options
– The make command will read the Makef i l e and compile (not

build) those files which have dependancies on modified files!

Makefile Syntax
• Makefiles consists of variables and rules.
• Rule Syntax:

< t ar get >: <r equi r ement s>
<command>

• The <r equi r ement s> may be files and/or other targets
• There must be a tab (not spaces) before <command>

• The first rule in a Makef i l e is the default <t ar get > for make

• Variable Syntax:
<var i abl e>=<st r i ng val ue>
• All variable values default to the shell variable values
• Example:

– BUILD_FLAGS = -Wall -g -ansi

Example Makefile

Exampl e Makef i l e
CXX=/ uns/ bi n/ uns- g++
CXXOPTS=- g - Wal l - ansi - DDEBUG

f oobar : f oo. o bar . o
$(CXX) $(CXXOPTS) –o f oobar f oo. o bar . o

f oo. o: f oo. cc f oo. hh

$(CXX) $(CXXOPTS) –c f oo. cc

bar . o: bar . cc bar . hh

$(CXX) $(CXXOPTS) –c bar . cc

cl ean:
r m - f cor e f oobar * . o * ~

Writing Code

• What causes a bug?
– What you meant != what you wrote

• Coding right the first time is making “what you meant”
align with “what you write”
– Invariants – asser t () invariants to discover when your

program’s state has changed unexpectedly

– Error handling and notification – Fix or report errors. Your
program should never be in a bad state

– Code review

– Use a debugger!
• See next slide …

5

Debugging
• How do you remove a bug?

– Read the code. If you don’t understand it, the bug will happen again
– Examine the state of the program at key points in the code

• Print statements in the code (suggestion: wrap debug output with
#i f def DEBUG)

• Use a debugger to view the state of your program with greater
flexibility/control

• Debugger advantages
– Compile your code only once
– Monitor all the values in the code
– Make changes while executing the code
– Examine core files that are produced when a program crashes

• In other words, debuggers are tools which allow you to examine
the state of a program in detail!
– In fact, debuggers can (and should) be used to understand and improve

your code

Debugging Techniques

• Goal: Isolate the problem, then fix it
– Don’ t try random things, looking for a solution

• If you don’ t understand it, it’ ll be back

• This method takes a long time

• You don’ t learn anything from it

– Look for the problem, not the solution
• Figure out two points in code that the problem is between,

and close the gap from there.

GDB - The GNU DeBugger
• To run gdb (a text-based debugger):

– gdb [<pr ogr am f i l e> [<cor e f i l e>]]

• <pr ogr am f i l e> Executable program file

• <cor e f i l e> Crashed program’s core dump

– You must compile with - g for debug information!

• Within gdb:
– Running gdb:

• r un [<ar gs>] Run program with arguments <ar gs>

• qui t Quit thegdb debugger

• hel p [<t opi c>] Access gdb’s internal help

– Examining program state:
• i nf o [l ocal s| ar gs] Prints out info on [local variables|args]

• backt r ace[<n>] Prints the top <n> frames on the stack

• p[r i nt] <expr > Print out <expr >

GDB continued
– Controlling program flow

• s[t ep] Step one line, entering called functions

• n[ext] Step one line, skipping called functions

• f i ni sh Finish the current function and print the return value

– Controlling program flow with breakpoints
• c[ont i nue] Continue execution (after a stop)

• b[r eak] [<wher e>] Set a breakpoint

• d[el et e] [<nums>] Deletes breakpoints by number

• [r] wat ch <expr > Sets a watchpoint, which will break
when <expr > is written to [or read]

– Modifying program state
• set <name> <expr > Set a variable to <expr >

• j ump <wher e> Resume program execution at <wher e>

DDD – A Graphical Debugger

• Built-over GDB

• Easier-to-use point and click interface

• To run DDD:
– ddd [<pr ogr am f i l e> [<cor e f i l e>]]

• DDD is not standard, but is accessible through
uns and through the course-setup.

• Nifty Tutorial available at:
http://heather.cs.ucdavis.edu/~matloff/Debug/Debug.pdf

Other Tools for CSE 326

• Shell scripts
– A series of shell commands which are read and

executed by the shell (like a DOS batch script).

– “Shell commands” may be:
• Executables such as emacs and t i me

• Built-in primitives such as l s and for-loops

– Search the internet for tutorials or sample shell
scripts

• “ tcsh builtin commands” worked well at Google …

6

Other Tools for CSE 326 (part 2)

• Awk
– A pattern scanning and processing utility. It searches

file(s) for specified patterns and perform associated
actions.

– Search the internet for tutorials or samples
• “awk tutorial” worked well at Google …

• Gnuplot
– A command-driven function and data plotting

program
– Try emailing the course alias with websites you

found; your classmates will thank you!

More Information - In the Dept

• In the department
– Your neighbors!

– i nf o and man

– uw- cs. l ab- hel p newsgroup

– . l ogi n, . cshr c, and / uns/ exampl es to see how other
people have things set up

– Course staff - office hours, email
• Why do you think we get paid the big bucks? =)

More Information - On the Web
• On the web:

– ht t p: / / www. f aqs. or g (comp. uni x questions FAQ)
– ht t p: / / www. googl e. com
– ht t p: / / www. r ef car ds. com

– ACM Tutorials:
ht t p: / / www. cs. washi ngt on. edu/ or gs/ acm/ t ut or i al s/

– CSE326 webpage
ht t p: / / www. cs. washi ngt on. edu/ educat i on/ cour ses/

cse326/ 02wi / comput i ng/ cl ass_l i nks. ht ml

• If you’ re curious, check out these topics:
– Source control (try searching the web for “cvs”)

• Multiple people working on a file concurrently
• Easily revert file changes

– Profiling (try searching the web for “gprof”)
• Find and eliminate inefficiencies in code

