15-Graphs I
 §12.1-12.3

May 15, 2002

Euler

- Analysis
- Number Theory
- Created Graph Theory

Leonard Euler 1707-1783
The Greatest Mathematician of All Time
\qquad

Can you take a walk, crossing each bridge exactly once?

- If we come in on one bridge, we go out by a different bridge
- Hence if degree of vertex is odd, we have to start or finish at that vertex
- So if more than two odd-degree verticies, we can't do it

What's the fastest way from Seattle to Spokane?

Washington

What's the cheapest inter-city network?

Washington

If we lose Wenatchee, can Seattle still talk to Spokane?

Downtown Seattle

We won't talk much about these graphs, but there's a homework problem on them.

- vertices
- edges
- degree
- neighbor

All our graphs will have at most one edge between verticies and no self-loops

Connected Graph

Tree

Disconnected Graph

Not a Tree

How do we...

- Find a path from u to v ?
- Find a short path from u to v ?
- Decide if G is connected?
- Decide if G has any cycles?

Representing Graphs \qquad

$$
G=V+E
$$

Verticies: a, b, c, d, e

Edges: $(a, b),(b, d),(a, d),(e, d)$

_ A Nice Representation

Adjacency List Representation:
$a: b, d$
$b: a, d$
$c:$
$d: a, b, e$
e : d
struct Vertex \{
\};
struct Graph \{
\};

- add an edge?
- delete an edge?
- add a vertex?

How to...

- find if there is an edge between u and v ?
- iterate over all neighbors?
- delete a vertex?

BFS
NumberBFS(Graph G, Vertex *root) \{
for each (v in G) \{
Encountered(v) = false;
Number (v) $=-1$;
\}
VertexQueue Q;
Encountered (root) = true;
Number (start) = 1;
next_num = 2;
Q.enQ (start) ;
while(!Q.Emtpy()) \{
Vertex *v = Q.deQ();
Number (v) = next_num++;
for each (w in $v->$ Neighbors())
if (!Encountered(w)) \{ Encountered(w) = true Q.enQ(w);
\} \}
\}

Using NumberBFS

How do we...

- determine if G is connected?
- find the distance from the root to a node?
- determine if G has any cycles?
- determine if G is a tree?
- find a path from the root to a node?

