CSE 326 – Data Structures – Autumn 2002

Homework #2 – Linked Lists

Due Monday October 21

 Use Electronic Turn In

This programming project should be completed in teams of 2 or 3 students. Your turn in will include:

1. Well-structured source code, commented as necessary.

2. A short description of the design decisions you made in developing the program.

Instructions for electronic turn in will be emailed to the cse326 list and posted on the course web page.

In class we described how an interpreter for the “nano-LISP” programming language could be written in JAVA. Implement such an interpreter for the language as specified below. Your program should be invoked by the command line:

 java nanolisp.class

Your program should repeatedly:

1. Read an expression from standard input.

2. Write the expression to standard output (followed by newline).

3. Evaluate the expression, and write the value to standard output (followed by newline).

until end of input is reached. (If standard input is the terminal, then entering “control-D” signals end of input. If standard input is redirected from a file then end of file signals end of input.) Ill-formed input (not legal nano-lisp) should cause your program to print a descriptive error message and then terminate. Bad input should not cause the Java interpreter to throw a low-level error such as “illegal pointer”. Example nano-LISP programs will be posted on the web site. (Note that we will also test your code on other examples.) You may start with the implementation of linked lists from Weiss, or create your own. You may also use the StringTokenizer class described in Weiss section 1.6.2. Do not, however, use the Java “Collections” library.

Nano-lisp expressions can be any of:

· A positive or negative integer

· A variable, that is a string made up of the characters a through z.

· The functional forms:

(plus expression expression)

(times expression expression)

(minus expression expression)

(divide expression expression)

The last form is integer division, e.g. (divide 8 3) = 2

· The comparison functions, that return 1 if true, 0 otherwise:

(greater expression expression)

(equals expression expression)

· The flow control forms:

(prog exp exp … exp)

Returns the value of the last expression

(if exp1 exp2 exp3)

If exp1 is not 0 then exp2 else exp3

(while exp1 exp2)

While exp1 is not 0 repeat exp2

· The special form for setting a variable. The value of the form is the value of the expression.

(set variable expression)

BONUS: This assignment includes an optional 4-point bonus section. At the end of the quarter bonus points will be totaled and used to increase the final grades according to a formula to be determined.

Extend nano-LISP to include expressions whose values are lists, rather than integers. This is done by introducing the new special form:

· (quote expression)
which returns its expression parameter unevaluated. For example, the expression:

(set x (quote (a (17 c) 22))

results in the variable x having as its value the nested list (a (17 c) 22). The expression

(set y (quote ()))

sets y to an empty list.

You should also implement the following functions for manipulating lists:

· (empty expression)
Returns 1 if the expression is an empty list, 0 otherwise. If the expression is not a list (i.e. an integer), return 0.

· (cons exp1 exp2)
Exp2 must evaluate to a list, it is an error otherwise. Return a list that is like exp2, but with exp1 inserted at its front. For example, after:

(setq x (quote (1 2 3)))

(setq y (cons 4 x))

(setq z (cons (quote (5 6)) x))

Variables are assigned as follows:

x == (1 2 3)

y == (4 1 2 3)

z == ((5 6) 1 2 3)

· (car expression)

The expression must be a list, it is an error otherwise. Returns the first element of the list. The list itself is not changed. If the expression is the empty list, then returned value is the empty list. For example, after:

(setq x (quote (1 2 3)))

(setq y (car x))

Variables are assigned as follows:

x == (1 2 3)

y == 1

· (cdr expression)

The expression must be a list, it is an error otherwise. Returns a list that is like that list, but with the first element removed. If the parameter is the empty list then it just returns the empty list. For example, after:

(setq x (quote (1 2 3)))

(setq y (cdr x))

Variables are assigned as follows:

X == (1 2 3)

Y == (2 3)

The best implementations of cons and cdr would run in constant time. Note that this would require “structure sharing” between different lists.

