CSE 326: Data Structures
Lecture #9
Amazingly Vexing Letters

Bart Niswonger
Summer Quarter 2001

Today’s Outline

* Project Il Discussion
— Testing
— “Software Engineering”
— Threads
— Role of Documentation

e AVL Trees
— Rotations
— Insertions

Architecture

AVL Tree
Dictionary Data Structure

* Binary search tree
properties
— binary tree property
— search tree property
» Balance property

— balance of every
node is:
-1<b <1
— result:
* depthis®(1 og n)

Balance

» Balance:
height(left subtree) - height(right subtree)

zero everywhere = perfectly balanced
small everywhere = balanced enough

Balance between -1 and 1 everywhere =
maximum height of 1.44 log n

But, How Do We Stay Balanced?

* | need:
— the smallest person in the class
— the tallest person in the class
— the averagest (?) person in the class

Beautiful Balance

Insert(middle)
Insert()
Insert(tall)

Bad Case #1

Insert()
Insert(middle)
Insert(tall)

Single Rotation

General Single Rotation

* Height of subtree same as it was before insert! So?
» Height of all ancestors unchanged.

Bad Case #2

Insert()
Insert(tall)
Insert(middle)

Double Rotation

General Double Rotation

h+2
a
h+1
h-1 b h-
h Z
C
w
X Y
h-12=—F—% 7

LURULEIIREEED > SEUUROIEIII h_lr)

» Height of subtree still the same as it was before insert!
» Height of all ancestors unchanged.

Insert Algorithm

Find spot for value
Hang new node
Search back up for imbalance

If there is an imbalance:
\ case #1: Perform single rotation and exit

'? case #2: Perform double rotation and exit

Easy Insert

Insert(3)

Hard Insert (Bad Case #1)

Insert(33)

Single Rotation

Hard Insert (Bad Case #2)

Insert(18)

Single Rotation (oops!)

10

Double Rotation (Step #1)

Look familiar?

Double Rotation (Step #2)

11

AVL Algorithm Revisited

1. Search downward 1. Search downward for
for spot spot, stacking parent
2. Insert node nodes
3. Unwi nd st ack, 2. Insert node
correcting heights 3. Unw nd stack,
a. |f inbalance #1, correcting heights
Si ng| e rotate a. |If inbal ance #1,
b. If inbalance #2, single rotate and
doubl e rotate exi t

b. If inbal ance #2,
doubl e rotate and
exit

Single Rotation Code oot

voi d Rot at eRi ght (Node *& root) {

Node * tenmp = root->right;

root->right = temp->left;

tenmp->left = root;

root - >hei ght = nmax(root->right->hei ght,
root - >l eft->hei ght)

+ 1;

t emp- >hei ght = max(tenp->ri ght - >hei ght,
t emp- >l ef t - >hei ght)

+ 1;

root = tenp;

12

Double Rotation Code

voi d Doubl eRot at eRi ght (Node *& root) {
Rot at eLeft (root->right);
Rot at eRi ght (root);

First Rotation

.........................

Double Rotation Completed

First Rotation Second Rotation

v

13

AVL

» Automatically Virtually Leveled

» Architecture for inVisible Leveling (the “in" is
inVisible)

» All Very Low
 Articulating Various Lines
» Amortizing? Very Lousy!

» Absolut Vodka Logarithms
 Amazingly Vexing Letters

Adelson-Velskii Landis

Bonus: Deletion (Easy Case)

Delete(15)

14

Deletion (Hard Case #1)

Delete(12)

Single Rotation on Deletion

Something very bad happened!

15

To Do

Project II-A for Wednesday

Read through section 4.7 in the book
Comments & Feedback

Homework

Coming Up

No Quiz Thursday

Midterm next week

Project Il — the writeup!

Even more balancing acts

A Huge Search Tree Data Structure

16

