CSE 326: Data Structures Lecture \#8 Balanced Dendrology

Bart Niswonger
Summer Quarter 2001

Today's Outline

- Clear up build tree analysis
- Deletion from BSTs
- Binary Search Trees

Analysis of BuildTree

- Worst case is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

$$
1+2+3+\ldots+n=\mathrm{O}\left(n^{2}\right)
$$

- Average case assuming all orderings equally likely is $\mathrm{O}(n \log n)$
- not averaging over all binary trees, rather averaging over all input sequences (inserts)
- equivalently: average depth of a node is $\log n$
- proof: see Introduction to Algorithms, Cormen, Leiserson, \& Rivest

Find the next larger node in this node's subtree.

- not next larger in entire tree

Node * succ (Node * root) \{
if (root->right $==$ NULL) return NULL;
else
return min(root->right);
\}
How many children can the successor of a node have?

Predecessor

Find the next smaller node in this node's subtree.

Node * pred (Node * root)
if (root->left $=$ = NULL) (2) return NULL;
else
 return max (root->left);
\}

Deletion

Why might deletion be harder than insertion?

Lazy Deletion

- Instead of physically deleting nodes, just mark them as deleted
+ Simpler
+ some adds just flip deleted flag
+ physical deletions done in batches
+ extra memory for deleted flag
- many lazy deletions slow finds
- some operations may have to
 be modified (e.g., min and max)

Lazy Deletion

Delete(17)
Delete(15)

Delete(5)
Find(9)

Find(16)

Insert(5)
Find(17)

Deletion - Leaf Case

Delete(17)

Deletion - One Child Case

Delete(15)

Deletion - Two Child Case

Delete(5)

replace node with value guaranteed to be between the left and right subtrees: the successor

Could we have used the predecessor instead?

Deletion - Two Child Case

Delete(5)

always easy to delete the successor - always has either 0 or 1 children!

Delete Code

```
void delete(Comparable x, Node *& p) {
    Node * q;
    if (p != NULL) {
        if (p->key < x) delete(x, p->right);
        else if (p->key > x) delete(x, p->left);
        else { /* p->key == x */
            if (p->left == NULL) p = p->right;
            else if (p->right == NULL) p = p->left;
            else {
                    q = successor(p);
                    p->key = q->key;
                    delete(q->key, p->right);
        }
    } } }
```

Dictionary Implementations

	unsorted array	sorted array	linked list	BST
insert	find $+\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$	find $+\mathrm{O}(1)$	$\mathrm{O}($ Depth $)$
find	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\log \mathrm{n})$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}($ Depth $)$
delete	find $+\mathrm{O}(1)$	$\mathrm{O}(\mathrm{n})$	find $+\mathrm{O}(1)$	O (Depth)

BST's looking good for shallow trees, i.e. the depth D is small $(\log n)$, otherwise as bad as a linked list!

Beauty is Only $\Theta(\log n)$ Deep

- Binary Search Trees are fast if they're shallow:
- e.g.: perfectly complete
- e.g.: perfectly complete except the "fringe" (leafs)
- any other good cases?

Problems occur when one
What matters here? branch is much longer than the other!

Balance

- Balance:
height(left subtree) - height(right subtree)
zero everywhere \Rightarrow perfectly balanced

small everywhere \Rightarrow balanced enough

Balance between -1 and 1 everywhere \Rightarrow maximum height of $1.44 \log n$

AVL Tree
 Dictionary Data Structure

- Binary search tree properties
- binary tree property
- search tree property
- Balance property
- balance of every node is:
$-1 \leq b \leq 1$
- result:
- depth is $\Theta(\log \mathrm{n})$

Testing the Balance Property

NULLs have
height -1

Not AVL Trees

But, How Do We Stay Balanced?

- I need:
- the smallest person in the class
- the tallest person in the class
- the averagest (?) person in the class

Beautiful Balance

Insert(middle) Insert(small) Insert(tall)

Bad Case \#1

Insert(small)
Insert(middle)
Insert(tall)

Single Rotation

General Single Rotation

- Height of subtree same as it was before insert!
- Height of all ancestors unchanged.

Bad Case \#2

Insert(small) Insert(tall) Insert(middle)

Double Rotation

General Double Rotation

- Height of subtree still the same as it was before insert!
- Height of all ancestors unchanged.

To Do

- Project II-A
- Read through section 4.6 in the book

Coming Up

- Project II - the complete version!
- More balancing acts
- A Huge Search Tree Data Structure

