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CSE 326: Data Structures
Lecture #8

Balanced Dendrology

Bart Niswonger
Summer Quarter 2001

Today’s Outline

• Clear up build tree analysis
• Deletion from BSTs
• Binary Search Trees
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Analysis of BuildTree
• Worst case is O(n2)

1 + 2 + 3 + … + n =  O(n2)

• Average case assuming all orderings equally 
likely is O(n log n)
– not averaging over all binary trees, rather averaging 

over all input sequences (inserts)
– equivalently:  average depth of a node is log n
– proof: see Introduction to Algorithms, Cormen, Leiserson, &

Rivest

Finding the Successor

Find the next larger node
in this node’s subtree.

– not next larger in entire tree

Node *  succ( Node *  r oot )  {

i f  ( r oot - >r i ght  == NULL)

r et ur n NULL;

el se

r et ur n mi n( r oot - >r i ght ) ;

}
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How many children can the successor of a node have?
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Predecessor

Find the next smaller node
in this node’s subtree.

Node *  pr ed( Node *  r oot )  {

i f  ( r oot - >l ef t  == NULL)

r et ur n NULL;
el se

r et ur n max( r oot - >l ef t ) ;

}
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Deletion
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Why might deletion be harder than insertion?
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Lazy Deletion

• Instead of physically deleting 
nodes, just mark them as 
deleted
+ Simpler
+ some adds just flip deleted flag
+ physical deletions done in 

batches
+ extra memory for deleted flag
– many lazy deletions slow finds
– some operations may have to 

be modified (e.g., min and 
max)
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Lazy Deletion
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Delete(17)

Delete(15)

Delete(5)

Find(9)

Find(16)

Insert(5)

Find(17)
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Deletion - Leaf Case
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Delete(17)

Deletion - One Child Case
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Deletion - Two Child Case
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Delete(5)

replace node with value guaranteed to be between the left and 

right subtrees:  the successor
Could we have used the predecessor instead?

Deletion - Two Child Case
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Delete(5)

always easy to delete the successor – always has either 0 or 1 
children!
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Delete Code
voi d del et e( Compar abl e x,  Node * & p)  {

Node *  q;

i f  ( p ! = NULL)  {

i f  ( p- >key < x)  del et e( x,  p- >r i ght ) ;

el se i f  ( p- >key > x)  del et e( x,  p- >l ef t ) ;

el se {  / *  p- >key == x * /

i f  ( p- >l ef t  == NULL)  p = p- >r i ght ;

el se i f  ( p- >r i ght  == NULL)  p = p- >l ef t ;

el se {

q = successor ( p) ;

p- >key = q- >key;

del et e( q- >key,  p- >r i ght ) ;

}

}  }  }

Dictionary Implementations

BST’s looking good for shallow trees, i.e. the depth D is 
small (log n), otherwise as bad as a linked list!

O(Depth)

O(Depth)

O(Depth)

BST

find + O(1)O(n)find + O(1)delete

O(n)O(log n)O(n)find

find + O(1)O(n)find + O(n)insert

linked listsorted

array

unsorted

array
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Beauty is Only (log n) Deep

• Binary Search Trees are fast if they’re shallow:
– e.g.: perfectly complete
– e.g.: perfectly complete except the “fringe” (leafs)
– any other good cases?

What matters here?
Problems occur when one
branch is much longer 
than the other!

Balance

• Balance:
height(left subtree) - height(right subtree)

Ø zero everywhere � perfectly balanced
Ø small everywhere � balanced enough

t
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Balance between -1 and 1 everywhere �
maximum height of 1.44 log n
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AVL Tree 
Dictionary Data Structure
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• Binary search tree 
properties
– binary tree property
– search tree property

• Balance property
– balance of every 

node is:
- 1 �� �� b �� �� 1

– result:
• depth is �� �� ( l og n)  15

Testing the Balance Property
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NULLs have 
height - 1
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An AVL Tree
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But, How Do We Stay Balanced?

• I need:
– the smallest person in the class

– the tallest person in the class

– the averagest (?) person in the class

Beautiful Balance

Insert(middle)
Insert(small)
Insert(tall)

00

1
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Bad Case #1

Insert(small)
Insert(middle)
Insert(tall)
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Single Rotation
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General Single Rotation

• Height of subtree same as it was before insert!
• Height of all ancestors unchanged.

So?
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Bad Case #2

Insert(small)
Insert(tall)
Insert(middle)
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Double Rotation
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General Double Rotation

• Height of subtree still the same as it was before insert!
• Height of all ancestors unchanged.
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To Do

• Project II-A
• Read through section 4.6 in the book

Coming Up

• Project II – the complete version!
• More balancing acts
• A Huge Search Tree Data Structure


