
1

CSE 326: Data Structures
Lecture #8

Balanced Dendrology

Bart Niswonger
Summer Quarter 2001

Today’s Outline

• Clear up build tree analysis
• Deletion from BSTs
• Binary Search Trees

2

Analysis of BuildTree
• Worst case is O(n2)

1 + 2 + 3 + … + n = O(n2)

• Average case assuming all orderings equally
likely is O(n log n)
– not averaging over all binary trees, rather averaging

over all input sequences (inserts)
– equivalently: average depth of a node is log n
– proof: see Introduction to Algorithms, Cormen, Leiserson, &

Rivest

Finding the Successor

Find the next larger node
in this node’s subtree.

– not next larger in entire tree

Node * succ(Node * r oot) {

i f (r oot - >r i ght == NULL)

r et ur n NULL;

el se

r et ur n mi n(r oot - >r i ght) ;

}

2092

155

10

307 17

How many children can the successor of a node have?

3

Predecessor

Find the next smaller node
in this node’s subtree.

Node * pr ed(Node * r oot) {

i f (r oot - >l ef t == NULL)

r et ur n NULL;
el se

r et ur n max(r oot - >l ef t) ;

}

2092

155

10

307 17

Deletion

2092

155

10

307 17

Why might deletion be harder than insertion?

4

Lazy Deletion

• Instead of physically deleting
nodes, just mark them as
deleted
+ Simpler
+ some adds just flip deleted flag
+ physical deletions done in

batches
+ extra memory for deleted flag
– many lazy deletions slow finds
– some operations may have to

be modified (e.g., min and
max)

2092

155

10

307 17

Lazy Deletion

2092

155

10

307 17

Delete(17)

Delete(15)

Delete(5)

Find(9)

Find(16)

Insert(5)

Find(17)

5

Deletion - Leaf Case

2092

155

10

307 17

Delete(17)

Deletion - One Child Case

2092

155

10

307

Delete(15)

6

Deletion - Two Child Case

3092

205

10

7

Delete(5)

replace node with value guaranteed to be between the left and

right subtrees: the successor
Could we have used the predecessor instead?

Deletion - Two Child Case

3092

205

10

7

Delete(5)

always easy to delete the successor – always has either 0 or 1
children!

7

Delete Code
voi d del et e(Compar abl e x, Node * & p) {

Node * q;

i f (p ! = NULL) {

i f (p- >key < x) del et e(x, p- >r i ght) ;

el se i f (p- >key > x) del et e(x, p- >l ef t) ;

el se { / * p- >key == x * /

i f (p- >l ef t == NULL) p = p- >r i ght ;

el se i f (p- >r i ght == NULL) p = p- >l ef t ;

el se {

q = successor (p) ;

p- >key = q- >key;

del et e(q- >key, p- >r i ght) ;

}

} } }

Dictionary Implementations

BST’s looking good for shallow trees, i.e. the depth D is
small (log n), otherwise as bad as a linked list!

O(Depth)

O(Depth)

O(Depth)

BST

find + O(1)O(n)find + O(1)delete

O(n)O(log n)O(n)find

find + O(1)O(n)find + O(n)insert

linked listsorted

array

unsorted

array

8

Beauty is Only (log n) Deep

• Binary Search Trees are fast if they’re shallow:
– e.g.: perfectly complete
– e.g.: perfectly complete except the “fringe” (leafs)
– any other good cases?

What matters here?
Problems occur when one
branch is much longer
than the other!

Balance

• Balance:
height(left subtree) - height(right subtree)

Ø zero everywhere � perfectly balanced
Ø small everywhere � balanced enough

t

5
7

Balance between -1 and 1 everywhere �
maximum height of 1.44 log n

9

AVL Tree
Dictionary Data Structure

4

121062

115

8

14137 9

• Binary search tree
properties
– binary tree property
– search tree property

• Balance property
– balance of every

node is:
- 1 �� �� b �� �� 1

– result:
• depth is �� �� (l og n) 15

Testing the Balance Property

2092

155

10

30177

NULLs have
height - 1

10

An AVL Tree

15

92 12

5

10

20

17

0

0

100

1 2

3 10

3

data

height

children

30
0

Not AVL Trees

15

12

5

10

20

17
0

10

0 2

3

30
0

15

10

20
0

1

2

(-1)-1 = -20-2 = -2

11

But, How Do We Stay Balanced?

• I need:
– the smallest person in the class

– the tallest person in the class

– the averagest (?) person in the class

Beautiful Balance

Insert(middle)
Insert(small)
Insert(tall)

00

1

12

Bad Case #1

Insert(small)
Insert(middle)
Insert(tall)

0

1

2

Single Rotation

0

1

2

00

1

13

General Single Rotation

• Height of subtree same as it was before insert!
• Height of all ancestors unchanged.

So?

a

X

Y

b

Z

a

XY

b

Zh h - 1

h + 1 h - 1

h + 2

h

h - 1

h

h - 1

h + 1

Bad Case #2

Insert(small)
Insert(tall)
Insert(middle)

0

1

2

14

Double Rotation

00

1

0

1

2

0

1

2

General Double Rotation

• Height of subtree still the same as it was before insert!
• Height of all ancestors unchanged.

a

Z

b

W

c

X Y

a

Z

b

W

c

X Y

h

h - 1?

h - 1
h - 1

h + 2

h + 1

h - 1h - 1

h

h + 1

h

h - 1?

15

To Do

• Project II-A
• Read through section 4.6 in the book

Coming Up

• Project II – the complete version!
• More balancing acts
• A Huge Search Tree Data Structure

