CSE 326: Data Structures
Lecture #8
Balanced Dendrology

Bart Niswonger
Summer Quarter 2001

Today’s Outline

o Clear up build tree analysis
» Deletion from BSTs
* Binary Search Trees

Analysis of BuildTree

e Worst case is O(n?)

1+2+3+..+n = 0O(n?

» Average case assuming all orderings equally
likely is O(n log n)
— not averaging over all binary trees, rather averaging
over all input sequences (inserts)

— equivalently: average depth of a node is log n

— proof: see Introduction to Algorithms, Cormen, Leiserson, &
Rivest

Finding the Successor

Find the next larger node

in this node’s subtree.
— not next larger in entire tree

if (root->right == NULL)
return NULL;

el se
return mn(root->right);

} How many children can the successor of a node have?

o
Predecessor W

Find the next smaller node
in this node’s subtree.

Node * pred(Node * root) {
if (root->left == NULL) @ (9
return NULL;
el se
return max(root->left);

Deletion

Why might deletion be harder than insertion?

Lazy Deletion

 Instead of physically deleting
nodes, just mark them as
deleted
+ Simpler
+ some adds just flip deleted flag

+ physical deletions done in
batches

+ extra memory for deleted flag
— many lazy deletions slow finds

— some operations may have to
be modified (e.g., min and
max)

Lazy Deletion

Delete(17)
Delete(15)
Delete(5)

Find(9)

Find(16)
Insert(5)

Find(17)

Deletion - Leaf Case

Delete(17)

Deletion - One Child Case

Delete(15)

Deletion - Two Child Case

Delete(5)

replace node with value guaranteed to be between the left and

right subtrees; the successor
Could we have used the predecessor ingtead?

Deletion - Two Child Case

Delete(5)

always easy to delete the successor — always has either O or 1
children!

Delete Code

voi d del et e(Conparabl e x, Node *& p) {

Node * (;
if (p!= NULL) {
if (p->key < x) delete(x, p->right);
else if (p->key > x) delete(x, p->left);
else { /* p->key == x */
if (p->left == NULL) p = p->right;
else if (p->right == NULL) p = p->left;
el se {
q = successor(p);
p->key = g->key;
del et e(g- >key, p->right);

}lod

Dictionary Implementations

unsorted sorted |linked list |BST
array array
insert |find + O(n) |O(n) find + O(1) | O(Depth)
find O(n) O(log n) |O(n) O(Depth)
delete find + O(1) |O(n) find + O(1) | O(Depth)

BST's looking good for shallow trees, i.e. the depth D is
small (log n), otherwise as bad as a linked list!

Beauty is Only ®(log n) Deep

» Binary Search Trees are fast if they're shallow:
— e.g.: perfectly complete
— e.g.: perfectly complete except the “fringe” (leafs)
— any other good cases?

Problems occur when one
What mattershere? pranch is much longer
than the other!

Balance

» Balance:
height(left subtree) - height(right subtree)

zero everywhere = perfectly balanced
small everywhere = balanced enough

Balance between -1 and 1 everywhere =
maximum height of 1.44 log n

AVL Tree
Dictionary Data Structure

* Binary search tree
properties
— binary tree property
— search tree property
» Balance property

— balance of every
node is:
-1<b <1
— result:
e depthis®(1 og n)

Testing the Balance Property

NULLSs have
height - 1

An AVL Tree

data
height

\ children

Not AVL Trees

10

But, How Do We Stay Balanced?

* | need:
— the smallest person in the class
— the tallest person in the class
— the averagest (?) person in the class

Beautiful Balance

Insert(middle)
Insert()
Insert(tall)

11

Bad Case #1

Insert()
Insert(middle)
Insert(tall)

Single Rotation

12

General Single Rotation

» Height of subtree same as it was before insert! So?

» Height of all ancestors unchanged.

Bad Case #2

Insert()
Insert(tall)
Insert(middle)

13

Double Rotation

General Double Rotation

h+2
a
h+1
h-1 b h-
h Z
C
w
X Y
h-12=—F—% 7

LURULEIIREEED > SEUUROIEIII h_lr)

» Height of subtree still the same as it was before insert!
» Height of all ancestors unchanged.

14

To Do

* Project lI-A
» Read through section 4.6 in the book

Coming Up

* Project Il — the complete version!
* More balancing acts
A Huge Search Tree Data Structure

15

