CSE 326: Data Structures Lecture #7 Dendrology

Bart Niswonger Summer Quarter 2001

Today's Outline

- Correction & Clarification
- Basic Tree Data Structure
- Dictionary & Search ADTs
- Binary Search Trees

Traversals

- Many algorithms involve walking through a tree, and performing some computation at each node
- Walking through a tree is called a traversal
- Common kinds of traversal
 - Pre-order
 - Post-order
 - Level-order

Naïve Implementations			
	unsorted array	sorted array	linked list
insert	find + O(n)	O(n)	find + O(1)
find	O(n)	O(log n)	O(n)
delete	find + O(1) (if no shrink)	O(n)	find + O(1)
	(if no shrink)	Goal: e sorted array	, akod list

BuildTree for BSTs

- Suppose the data 1, 2, 3, 4, 5, 6, 7, 8, 9 is inserted into an initially empty BST:
 - in order
 - in reverse order
 - median first, then left median, right median, etc.

- Worst case: O(n²) as we've seen
- Average case assuming all orderings equally likely:

Coming Up

- A day off!! (July 4th, Wednesday)
- Second homework due (July 5th)
- Third Quiz (also July 5th)
- A bit more Binary Search Trees
- Self-balancing Binary Search Trees
- Huge Search Tree Data Structure