
1

CSE 326: Data Structures
Lecture #7
Dendrology

Bart Niswonger
Summer Quarter 2001

Today’s Outline

• Correction & Clarification
• Basic Tree Data Structure
• Dictionary & Search ADTs
• Binary Search Trees

2

height & depth Defined

• Length of a path equals number of
edges on the path

• height(n) : length of the longest path
from n to a leaf

• depth(n) : length of path from root to n

• height of a tree equals height(root)

Right Path in a Leftist Tree is Short
• If the right path has length at least

r , the tree has at least 2r +1- 1 nodes
• Proof by induction

Basis: r = 1. Tree has at least
three nodes: 21+1 - 1 = 3

Inductive step: assume true for r ’ < r . The right subtree has a
right path of length at least r - 1, so it has at least 2r – 1
nodes. The left subtree must also have a right path of length at
least r - 1 (otherwise not leftist). Again, the left has2r - 1 nodes. All told then, there are at least:
nodes. All told then, there are at least:

(2r – 1) + (2r – 1) + 1 = 2r +1 - 1

• So, a leftist tree with at least nnodes has a right path of length at most
path of length at most

l og(n + 1) ~ l og n

0

000

11

2

1

00

3

A Generic Tree

A

I

D

H J

B

F

K L

EC

G

A Generic Tree Data Structure

data

first_child
next_sibling

A

B C D E
�

4

A Generic Tree in A Generic
Tree Data Structure

A

B C D E

F G
H I J

K L

Combined View of Tree

A

I

D

H J

B

F

K L

EC

G

5

Traversals

• Many algorithms involve walking through a
tree, and performing some computation at
each node

• Walking through a tree is called a traversal

• Common kinds of traversal
– Pre-order
– Post-order
– Level-order

Binary Trees

• Binary tree is
– a root
– left subtree (maybe empty)
– right subtree (maybe empty)

• Properties
– max # of leaves:
– max # of nodes:
– average height for N nodes:

• Representation:

A

B

D E

C

F

HG

JIData

right
pointer

left
pointer

6

Representation

A
right

pointer
left

pointer

A

B

D E

C

F
B

right
pointer

left
pointer

C
right

pointer
left

pointer

D
right

pointer
left

pointer

E
right

pointer
left

pointer

F
right

pointer
left

pointer

• Dictionary operations
– create
– destroy
– insert
– find
– delete

• Stores values associated with user-specified
keys
– values may be any (homogenous) type
– keys may be any (homogenous) comparable type

Dictionary ADT
• kim chi

– spicy cabbage

• Krispy Kreme
– tasty doughnut

• kiwi
– Australian fruit

• kale
– leafy green

• Kool Aid
– fruit (?) drink

insert

find(kiwi)

•kohlrabi
- upscale tuber

• kiwi
- Australian fruit

7

Search ADT
• Dictionary operations

– create
– destroy
– insert
– find
– delete

• Stores keys
– keys may be any (homogenous) comparable
– quickly tests for membership

• Klee
• Matisse
• Rodin
• Whistler
• Heartfield
• Pollock
• Gross

insert

find(Rodin)

•Hopper

• Rodin

A Modest Few Uses

• Arrays
• Sets
• Dictionaries
• Router tables
• Page tables
• Symbol tables
• C++ Structures

8

Naïve Implementations

• Linked list

• Unsorted array

• Sorted array

insert deletefind

so close!

Naïve Implementations

find + O(1)O(n)find + O(1)
(if no shrink)

delete

O(n)O(log n)O(n)find

find + O(1)O(n)find + O(n)insert

linked listsorted arrayunsorted array

Goal:
fast find like sorted array,

dynamic inserts/deletes like linked list

9

Binary Search Tree
Dictionary Data Structure

4

121062

115

8

14

13

7 9

• Binary tree property
– each node has � 2

children
– result:

• storage is small
• operations are simple
• average depth is small

• Search tree property
– all keys in left subtree

smaller than root’s key
– all keys in right subtree

larger than root’s key
– result:

• easy to find any given
key

Example and Counter-Example

3

1171

84

15

4

181062

115

8

20

21BINARY SEARCH TREE NOT A
BINARY SEARCH TREE

7

15

10

In Order Listing

2092

155

10

307 17

In order listing:
2� 5� 7� 9� 10� 15� 17� 20� 30

Finding a Node

Node * & f i nd(Compar abl e key,
Node * & r oot) {

i f (r oot == NULL)
r et ur n r oot ;

el se i f (key < r oot - >key)
r et ur n f i nd(key,

r oot - >l ef t) ;
el se i f (key > r oot - >key)

r et ur n f i nd(key,
r oot - >r i ght) ;

el se
r et ur n r oot ;

}

2092

155

10

307 17

runtime:

11

Insert

2092

155

10

307 17

runtime:

voi d i nser t (Compar abl e key,

Node * r oot) {

Node * & t ar get =

f i nd(key, r oot) ;

asser t (t ar get == NULL) ;

t ar get = new Node(key) ;

}

Digression: Value vs.
Reference Parameters

• Value parameters (Object foo)
– copies parameter
– no side effects

• Reference parameters (Object & foo)
– shares parameter
– can affect actual value
– use when the value needs to be changed

• Const reference parameters (const Object & foo)
– shares parameter
– cannot affect actual value

12

BuildTree for BSTs

• Suppose the data 1, 2, 3, 4, 5, 6, 7, 8, 9 is
inserted into an initially empty BST:
– in order

– in reverse order

– median first, then left median, right median, etc.

Analysis of BuildTree

• Worst case: O(n2) as we’ve seen
• Average case assuming all orderings

equally likely:

13

Bonus: FindMin/FindMax

• Find minimum

• Find maximum
2092

155

10

307 17

To Do

• Start Project II
• Answer the Quiz questions you missed
• Read chapter 4 in the book

14

Coming Up

• A day off!! (July 4th, Wednesday)
• Second homework due (July 5th)
• Third Quiz (also July 5th)
• A bit more Binary Search Trees
• Self-balancing Binary Search Trees
• Huge Search Tree Data Structure

