

Analysis of Algorithms

- Efficiency measure
 - how long the program runs time complexity
 - how much memory it uses space complexity
 - For today, we'll focus on time complexity only
- Why analyze at all?
 - Confidence: algorithm will work well in practice
 - Insight : alternative, better algorithms

Asymptotic Analysis

• Complexity as a function of input size n

$$T(n) = 4n + 5$$

T(n) = 0.5 n log n - 2n + 7
T(n) = 2ⁿ + n³ + 3n

• What happens as n grows?

F	lates	s of G	Growt	h
 Suppose 	we ca	n exec	ute 10^1	⁰ ops / sec
$\frac{n=?}{\Gamma(n)=?}$	10	100	1,000	10,000
<u>n</u>	10 ⁻⁹ s	10 ⁻⁸ s	10 ⁻⁷ s	10 ⁻⁶ s
n log ₂ n	10 ⁻⁹ s	10 ⁻⁸ s	10 ⁻⁶ s	10 ⁻⁵ s
n ²	10 ⁻⁸ s	10 ⁻⁶ s	10 ⁻⁴ s	10 ⁻² s
n ³	10 ⁻⁷ s	10 ⁻⁴ s	0.1s	100s
2^n	10 ⁻⁷ s	10^{20} s	10 ²⁹¹ s	forever!
$\frac{n^3}{2^n}$	$\frac{10^{-7} \text{ s}}{10^{-7} \text{ s}}$	$10^{-4}s$ $10^{20}s$	$0.1s = 10^{291}s$	100s forever!

	Race Against Time!					
<u>Race #</u>	<u>T₁(n)</u>	<u>T₂(n)</u>	Which is faster?			
1	$n^{3} + 2n^{2}$	$100n^2 + 1000$				
2	n ^{0.1}	log n				
3	$n + 100n^{0.1}$	2n + 10 log n				
4	5n ⁵	n!				
5	n ⁻¹⁵ 2 ⁿ /100	1000n ¹⁵				
6	8 ^{2log n}	$3n^7 + 7n$				
7	mn ³	2 ^m n				

Race Against Time! (2)					
<u>Race #</u>	<u>T₁(n)</u>	<u>T₂(n)</u>	Which is faster?		
1	$n^3 + 2n^2$	$100n^2 + 1000$	$T_2 : O(n^2)$		
2	n ^{0.1}	log n	T_2 : O(log n)		
3	$n + 100n^{0.1}$	2n + 10 log n	Tie: O(n)		
4	5n ⁵	n!	$T_1 : O(n^5)$		
5	n ⁻¹⁵ 2 ⁿ /100	1000n ¹⁵	$T_2 : O(n^{15})$		
6	8 ^{2log n}	$3n^{7} + 7n$	$T_1 : O(n^6)$		
7	mn ³	2 ^m n	It depends!		

Simple loops

```
sum = 0
for i = 1 to n do
  for j = 1 to n do
    sum = sum + 1
```


