
1

CSE 326: Data Structures
Lecture #6

Asymptotic Analysis

Ashish Sabharwal
Summer Quarter 2001

First a Reminder!

• Don’t forget to turn-in your graded
quizes with your homework!!!

• Policy: If you don’t, you are responsible 
for doing ALL problems as hw
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Analysis of Algorithms

• Efficiency measure
– how long the program runs time complexity

– how much memory it uses space complexity
• For today, we’ll focus on time complexity only

• Why analyze at all?
– Confidence: algorithm will work well in practice

– Insight        : alternative, better algorithms

Time Complexity

• We count number of abstract steps
– Not physical runtime in seconds

– Not every machine instruction

• What is one abstract step?
count = count + 1

y = a*x3 + b*x + c

if (n 
�

2 sqrt(m) || n � 0.5 sqrt(m)) …
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Asymptotic Analysis

• Complexity as a function of input size n
T(n) = 4n + 5

T(n) = 0.5 n log n - 2n + 7

T(n) = 2n + n3 + 3n

• What happens as n grows?

Why do we care?
• Most algorithms are fast for small n

– Time difference too small to be noticeable

– External things dominate (OS, disk I/O, …)

• n is typically large in practice
– Databases, internet, graphics, …

• Time difference really shows up as n 
grows!
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Rates of Growth

• Suppose we can execute 1010 ops / sec

 10 100 1,000 10,000 

n 10-9s 10-8s 10-7s 10-6s 

n log2n 10-9s 10-8s 10-6s 10-5s 

n2 10-8s 10-6s 10-4s 10-2s 

n3 10-7s 10-4s 0.1s 100s 

2n 10-7s 1020s 10291s forever! 
 

 

104s = 2.8 hrs 1018s = 30 billion years

n=?
T(n)=?

Obtaining Asymptotic Bounds
• Eliminate low order terms

– 4n + 5 � 4n

– 0.5 n log n - 2n + 7 � 0.5 n log n

– 2n + n3 + 3n � 2n

• Eliminate coefficients
– 4n � n

– 0.5 n log n � n log n

– n log n2 = 2 n log n � n log n
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Race Against Time! 
T1(n)

n3 + 2n2

n0.1

n + 100n0.1

5n5

n-152n/100

82log n

mn3

T2(n)

100n2 + 1000

log n

2n + 10 log n

n!

1000n15

3n7 + 7n

2mn

Which is faster?Race #

1

2

3

4

5

6

7

Race 1

n3 + 2n2 100n2 + 1000vs.
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Race 2

n0. 1 l og nvs.

Race 3

n + 100n0. 1 2n + 10 l og nvs.
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Race 4

5n5 n!vs.

Race 5

n- 152n/ 100 1000n15vs.



8

Race 6

82l og( n) 3n7 + 7nvs.

Race Against Time! (2)
T1(n)

n3 + 2n2

n0.1

n + 100n0.1

5n5

n-152n/100

82log n

mn3

T2(n)

100n2 + 1000

log n

2n + 10 log n

n!

1000n15

3n7 + 7n

2mn

Which is faster?

T2  : O(n2) 

T2  : O(log n)

Tie: O(n)

T1  : O(n5)

T2  : O(n15)

T1   : O(n6)

It depends!

Race #

1

2

3

4

5

6

7
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Typical Growth Rates

– constant: O(1)
– logarithmic: O(log n) (logkn, log n2 � O(log n))
– poly-log: O(logk n)
– linear: O(n)
– log-linear: O(n log n)
– superlinear: O(n1+c) (c is a constant > 0)
– quadratic: O(n2)
– cubic: O(n3)
– polynomial: O(nk) (k is a constant)
– exponential: O(cn) (c is a constant > 1)

Terminology

• T(n) � O(f(n))
–
�

constants c and n0 s.t.  T(n) � c f(n) � n � n0

– 1, log n, n, 100n � O(n)

• T(n) � � (f(n))
–
�

constants c and n0 s.t.  T(n) � c f(n) � n � n0

– n/10, n2, 100 . 2n, n3 log n ��� (n)

• T(n) � 	 (f(n))

– T(n) � O(f(n)) and T(n) �
� (f(n))

– n+4, 2n, 100n, 0.01 n + log n ��� (n)
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Terminology (2)

• T(n) � o(f(n))
– T(n) � O(f(n)) and T(n) � � (f(n))

– 1, log n, n0.99 � o(n)

• T(n) � � (f(n))
– T(n) �
� (f(n)) and T(n) � � (f(n))

– n1.01, n2, 100 . 2n, n3 log n ��� (n)

Terminology (3)

• Roughly speaking, the correspondence is

O      �
� �

	 =

o       <

� >
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Types of Analysis
Three orthogonal axes:

– bound flavor
• upper bound (O, o)
• lower bound (� , � )
• asymptotically tight ( � )

– analysis case
• worst case (adversary)
• average case
• best case
• “common” case

– analysis quality
• loose bound (most true analyses)
• tight bound (no better bound which is asymptotically 

different)

Analyzing Code

• General guidelines

Simple C++ operations - constant time
consecutive stmts - sum of times per stmt
conditionals - sum of branches and 

condition
loops - sum over iterations
function calls - cost of function body
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Simple loops
sum = 0

f or  i = 1 t o n do

f or  j = 1 t o n do

sum = sum + 1

Simple loops (2)
sum = 0

f or  i = 1 t o n do

f or  j = i t o n do

sum = sum + 1



13

Conditionals and While Loop
• Conditional

i f  C t hen S1 el se S2

• Loops
whi l e C do S

Recursion
• Recursion

– Almost always yields a recurrence
– Recursive max

• Example: Factorial
f ac( n)

i f  n = 0 r et ur n 1
el se r et ur n n * f ac( n - 1)

T( 0)  = 1

T( n)  �� �� c + T( n - 1)  if n > 0
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Example: Factorial
Analysis by simple calculation

T( n)  �� �� c + c + T( n - 2)
(by substitution)

T( n)  �� �� c + c + c + T( n - 3)
(by substitution, again)

T( n)  �� �� kc + T( n - k)
(extrapolating 0 < k �� �� n)

T( n)  �� �� nc + T( 0)  = nc + b
(setting k = n)

• T( n) �

Example: Mergesort

• Mergesort algorithm
– If list has 1 element, return

– Otherwise split list in half, sort first half, sort 
second half, merge together

• T( 1)  = 1

T( n)  �� �� 2T( n/ 2)  + cn if n > 1

Splitting and mergingSorting the two halves
recursively
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Example: Mergesort (2)
Analysis by simple calculation

T( n)  �� �� 2T( n/ 2)  + cn

�� �� 2( 2T( n/ 4)  + c( n/ 2) )  + cn

= 4T( n/ 4)  + cn + cn

�� �� 4( 2T( n/ 8)  + c( n/ 4) )  + cn + cn

= 8T( n/ 8)  + cn + cn + cn

�� �� 2kT( n/ 2k)  + kcn (extrapolating 1 < k �� �� n)
�� �� nT( 1)  + cn l og n  (for 2k = n or k = l og n)

• T( n) � ?

Example: Mergesort (3)
Analysis by induction

1. Guess the answer!
T( n)  �� �� an l og n + b
a, b constants, not known yet

2. Verify base case
T( 1)  �� �� b

3. Verify inductive step
T( n) �� �� 2T( n/ 2)  + cn

= 2( an/ 2 l og n/ 2 + b)  + cn
= an l og n/ 2 + 2b + cn
= ( an l og n + b)  – ( an – b – cn)
�� �� an l og n + b     for a > c

b �� �� 1
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Summary
• Determine what characterizes a problem’s 

input size

• Express how much resources (time, memory, 
etc.) an algorithm requires as a function of 
input size using O(•), � (•), 	 (•)
– worst case
– best case
– average case
– common case


