
1

CSE 326: Data Structures
Lecture #5

Political Heaps

Bart Niswonger
Summer Quarter 2001

Today’s Outline

• Project comments & questions
• Things Bart Didn’t Finish on Monday

(Leftist Heaps)
• Skew Heaps
• Comparing Heaps

2

Merging Heaps
How can we make it fast?

• Array-based implementation:

• Pointer-based implementation:

Leftist Heaps

• Idea:

• Leftist heap:
– almost all nodes are on the left

– all the merging work is on the right

make it so that all the work you
have to do in maintaining a heap
is in one small part

3

the null path length (npl) of a node is the number
of nodes between it and a null in the tree

Not-so Random Definition:
Null Path Length

• npl(null) = -1
• npl(leaf) = 0
• npl(single-child

node) = 0

000

001

11

2

another way of looking at it:
npl is the height of complete
subtree rooted at this node

0

Leftist Heap Properties

• Heap-order property
– parent’s priority value is

�
to childrens’ priority

values
– result: minimum element is at the root

• Leftist property
– null path length of left subtree is � npl of right

subtree
– result: tree is at least as “heavy” on the left as

the right

Are leftist trees complete? Balanced?

4

Leftist tree examples
NOT leftist leftist

00

001

11

2

0

0

000

11

2

1

000

0

0

0

0

0

1

0

leftist

0

every subtree of a leftist
tree is leftist, comrade!

Right Path in a Leftist Tree is Short
• If the right path has length at least

r , the tree has at least 2r - 1 nodes
• Proof by induction

Basis: r = 1. Tree has at least
one node: 21 - 1 = 1

Inductive step: assume true for r ’ < r . The right subtree has a
right path of at least r - 1 nodes, so it has at least 2r - 1 - 1
nodes. The left subtree must also have a right path of at least
r - 1 (otherwise, there is a null path of r - 3, less than the
right subtree). Again, the left has 2r - 1 - 1 nodes. All told then,
there are at least:

2r - 1 - 1 + 2r - 1 - 1 + 1 = 2r - 1

• So, a leftist tree with at least n nodes has a right
path of at most l og n nodes

0

000

11

2

1

00

5

Merging Two Leftist Heaps
• merge(T1,T2) returns one leftist heap

containing all elements of the two (distinct)
leftist heaps T1 and T2

a

L1 R1

b

L2 R2

merge
T1

T2

a < b

a

L1

merge

b

L2 R2

R1

Merge Continued

a

L1 R’

R’ = Merge(R1, T2)

a

R’ L1

npl(R’) > npl(L1)

runtime:

6

Operations on Leftist Heaps
• merge with two trees of total size n: O(log n)
• insert with heap size n: O(log n)

– pretend node is a size 1 leftist heap
– insert by merging original heap with one node

heap

• deleteMin with heap size n: O(log n)
– remove and return root
– merge left and right subtrees

merge

merge

Example

1210

5

87

3

14

1

0 0

1

0 0

0

merge

7

3

14

?

0

0

1210

5

8

1

0 0

0

merge

10

5
?

0 merge

12

8

0

0

8

12

0

0

7

Sewing Up the Example

8

12

0

0

10

5
?

0

7

3

14

?

0

0

8

12

0

0

10

5
1

0

7

3

14

?

0

0
8

12

0

0

10

5 1

0

7

3

14

2

0

0

Done?

Finally…

8

12

0

0

10

5 1

0

7

3

14

2

0

0

7

3

14

2

0

0
8

12

0

0

10

5 1

0

8

Iterative Leftist Merging

1210

5

87

3

14

1

0 0

1

0 0

0

merge

downward pass: merge right paths

8

12

0

0

10

5 1

0

7

3

14

2

0

0

Iterative Leftist Merging
upward pass: fix right path

8

12

0

0

10

5
1

0

7

3

14

2

0

0
8

12

0

0

10

5
1

0

7

3

14

2

0

0
8

12

0

0

10

5
1

0

7

3

14

2

0

0

7

3

14

2

0

0
8

12

0

0

10

5
1

0

What do we need to do
this iteratively?

9

Random Definition:
Amortized Time

am·or·tize
To wr ite off an expenditure for (office
equipment, for example) by prorating
over a certain period.

time
A nonspatial continuum in which
events occur in apparently
irreversible succession from the past
through the present to the future.

am·or·tized time
Running time limit resulting from writing off expensive
runs of an algorithm over multiple cheap runs of the
algorithm, usually resulting in a lower overall running time
than indicated by the worst possible case.

If M operations take total O(M log N) time,
amortized time per operation is O(log N)

Skew Heaps

• Problems with leftist heaps
– extra storage for npl
– two pass merge (with stack!)
– extra complexity/logic to maintain and check npl

• Solution: skew heaps
– blind adjusting version of leftist heaps
– amortized time for merge, insert, and deleteMin is

O(log n)
– worst case time for all three is O(n)
– merge always switches children when fixing right path
– iterative method has only one pass

10

Merging Two Skew Heaps

a

L1 R1

b

L2 R2

merge
T1

T2

a < b

a

L1

merge

b

L2 R2

R1

Example

1210

5

87

3

14

merge

7

3

141210

5

8

merge
7

3

1410

5

8

merge
12

7

3

14108

5

12

11

Skew Heap Code
voi d mer ge(heap1, heap2) {

case {
heap1 == NULL: r et ur n heap2;
heap2 == NULL: r et ur n heap1;
heap1. f i ndMi n() < heap2. f i ndMi n() :

t emp = heap1. r i ght ;
heap1. r i ght = heap1. l ef t ;
heap1. l ef t = mer ge(heap2, t emp) ;
r et ur n heap1;

ot her wi se:
r et ur n mer ge(heap2, heap1) ;

}
}

Comparing Heaps

• Binary Heaps

• d-Heaps

• Binomial Queues

• Leftist Heaps

• Skew Heaps

12

To Do

• Project I due tonight @ 10pm
– Please email me if you are going to be late

– Groups were due Monday

• Homework due tomorrow @ START of
section

Coming Up

• Section
– tomorrow: The Ashish Experience

• Project II

• Asymptotic Complexity!

