CSE 326: Data Structures
Lecture #4
Heaps more Priority Qs

Bart Niswonger
Summer Quarter 2001

Today’s Outline

* Return quizzes

» Things Bart Didn’t Finish on Friday
(insert & d-Heaps)

 Leftist Heaps
o Skew Heaps
» Comparing Heaps

Priority Queue ADT

* Priority Queue operations

— create
_ . F(7) E(5) .
destro
CeSTOY (o) it p(100) A(4) (deeteMin, o)
— insert B(6)
— deleteMin
— is_empty

 Priority Queue property: for two elements in
the queue, x and vy, if x has a lower priority
value thany, x will be deleted before y

Nifty Storage Trick

e Calculations:
— child:

— parent:

— root:

— next free:

12,21 4|5|7|6|10] 8119 (121420

DeleteMin

pqueue. del et eM n() 5

Insert

pqueue. i nsert (3)

(2) (2)
(4) (5) (4) (5)
—

N ©® W 6 N ©® W 6

DOV DERVOO

Percolate Up

(2

(4)
—> _>

m
AAL AN

Insert Code

voi d insert(Qbject 0) { i nt percol ateUp(int hole,
; . hj ect val) {
I
a§sert(.|sFuII()), while (hole > 1 &&
Sl zet+ val < Heap[hol e/ 2])
newPos = Heap[hol e] = Heap[hol e/ 2];
per col at eUp(si ze, 0) ;) hole /= 2;
Heap[newPos] = o; return hole;
} }

runtime:

Other Priority Queue
Operations

decreaseKey

— given the position of an object in the queue,
reduce its priority value

increaseKey

— given the position of an an object in the queue,
increase its priority value

remove

— given the position of an object in the queue,
remove it

buildHeap
— given a set of items, build a heap

DecreaseKey, IncreaseKey,
and Remove

voi d decreaseKey(int obj) { voi d renmove(int obj) {

assert(size >= obj); SZ??L} ;f;f;(:;j obj) ;

tenp = Heap[obj]; NEG | NF_VAL);
newPos = percol at eUp(obj, tenp); del eteM n();
Heap[newPos] = tenp; }

}

voi d i ncreaseKey(int obj) {
assert(size >= obj);
tenp = Heap[obj];
newPos = percol at eDown(obj, tenp);
Heap[newPos] = tenp;

BuildHeap

Floyd’s Method. Thank you, Floyd.

12

5

11

3

10

6

9

4

8

17

2

pretend it’s a heap and fix the heap-order properﬁ)

Finally...

o
(3) (2)
@ & ® @
LEWLWOW

runtime:

Thinking about Heaps

* Observations

— finding a child/parent index is a multiply/divide by
two

— operations jump widely through the heap
— each operation looks at only two new nodes
— inserts are at least as common as deleteMins

* Realities

— division and multiplication by powers of two are
fast

— looking at one new piece of data sucks in a cache
line

— with huge data sets, disk accesses dominate

Solution: d-Heaps

« Each node has d children ©.
« Sitill representable by
array (3) () (2

» Good choices for d:

— optimize performance based on @ @ 6 @ @ @ @ @

of inserts/removes

— choose a power of twofor [12[1]3]7[2[4][8]5]12[11]10[6]9]
efficiency

— fit one set of children in a cache
line

— fit one set of children on a
memory page/disk block

One More Operation

* Merge two heaps. Ideas?

Merge

Given two heaps, merge them into one
heap

— first attempt: insert each element of the
smaller heap into the larger.

runtime;:

— second attempt: concatenate heaps’ arrays
and run buildHeap.

runtime;:

How about O(log n) time?

ldea: Hang a New Tree

percolate down!

ldea: Hang a New Tree

Leftist Heaps

e |dea:

make it so that all the work you
have to do in maintaining a heap
is in one small part

* Leftist heap:
—almost all nodes are on the left
— all the merging work is on the right

10

Random Definition:
Null Path Length

the null path length (npl) of a node is the number
of nodes between it and anull in the tree

e npl(null) = -1 (2

* npl(leaf) =0

* npl(single-child
node) = 0 © ® © @

another way of looking at it:
npl is the height of complete 01010
subtree rooted at this node

Leftist Heap Properties

« Heap-order property

— parent’s priority value is < to childrens’ priority
values

— result: minimum element is at the root
o Leftist property

—null path length of left subtree is > npl of right
subtree

—result: tree is at least as “heavy” on the left as
the right

Are leftist trees complete? Balanced?

11

Leftist tree examples

NOT leftist leftist leftist
©

Right Path in a Leftist Tree is Short

« If the right path has length at least (2
r, the tree has atleast 2'- 1 nodes @ (D
* Proof by induction D 00 O
Basis: r = 1. Tree has at least
onenode: 2! - 1 =1 ONORIN©

Inductive step: assume true forr’ < r. The right subtree has a
right path of atleast r - 1 nodes, soithasatleast2" - * - 1
nodes. The left subtree must also have a right path of at least

r - 1 (otherwise, there is a null path of r - 3, less than the
right subtree). Again, the left has 2" - * - 1 nodes. All told then,
there are at least:

20-1 . 14+ 20-1 -1 +1=2 -1
» So, a leftist tree with at least n nodes has a right
path of at most| og n nodes

12

Whew!

To Do

* Unix development Tutorial
— Tuesday — 10:50am — Sieg 322

 Finish Project | for Wednesday
 Read chapters 1 & 2

13

Coming Up

Theory!

Proof by Induction
Asymptotic Analysis
Quiz #2 (Thursday)

14

