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CSE 326: Data Structures
Lecture #4

Heaps more Priority Qs

Bart Niswonger
Summer Quarter 2001

Today’s Outline

• Return quizzes
• Things Bart Didn’t Finish on Friday 

(insert & d-Heaps)
• Leftist Heaps
• Skew Heaps
• Comparing Heaps
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Priority Queue ADT

• Priority Queue operations
– create
– destroy
– insert
– deleteMin
– is_empty

• Priority Queue property: for two elements in 
the queue, x and y, if x has a lower priority 
value than y, x will be deleted before y
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Nifty Storage Trick

• Calculations:
– child:

– parent:

– root:

– next free:

0
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DeleteMin
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Insert
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Percolate Up
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Insert Code
voi d i nser t ( Obj ect  o)  {

asser t ( ! i sFul l ( ) ) ;

s i ze++;

newPos =

per col at eUp( si ze, o) ;

Heap[ newPos]  = o;

}

i nt  per col at eUp( i nt  hol e,  
Obj ect  val )  {

whi l e ( hol e > 1 &&
val  < Heap[ hol e/ 2] )

Heap[ hol e]  = Heap[ hol e/ 2] ;
hol e / = 2;

}
r et ur n hol e;

}

runtime:
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Other Priority Queue 
Operations

• decreaseKey 
– given the position of an object in the queue, 

reduce its priority value

• increaseKey
– given the position of an an object in the queue, 

increase its priority value

• remove
– given the position of an object in the queue, 

remove it

• buildHeap
– given a set of items, build a heap

DecreaseKey, IncreaseKey, 
and Remove

voi d decr easeKey( i nt obj )  {

asser t ( si ze >= obj ) ;

t emp = Heap[ obj ] ;

newPos = per col at eUp( obj ,  t emp) ;

Heap[ newPos]  = t emp;

}

voi d i ncr easeKey( i nt  obj )  {

asser t ( si ze >= obj ) ;

t emp = Heap[ obj ] ;

newPos = per col at eDown( obj ,  t emp) ;

Heap[ newPos]  = t emp;

}

voi d r emove( i nt  obj )  {
asser t ( si ze >= obj ) ;
per col at eUp( obj ,  

NEG_I NF_VAL) ;
del et eMi n( ) ;

}
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BuildHeap
Floyd’s Method. Thank you, Floyd.
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pretend it’s a heap and fix the heap-order property!
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Finally… 
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runtime:

Thinking about Heaps

• Observations
– finding a child/parent index is a multiply/divide by 

two
– operations jump widely through the heap
– each operation looks at only two new nodes
– inserts are at least as common as deleteMins

• Realities
– division and multiplication by powers of two are 

fast
– looking at one new piece of data sucks in a cache 

line
– with huge data sets, disk accesses dominate
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Solution: d-Heaps

• Each node has d children
• Still representable by 

array
• Good choices for d:

– optimize performance based on 
# of inserts/removes

– choose a power of two for 
efficiency

– fit one set of children in a cache 
line

– fit one set of children on a 
memory page/disk block

3 7 2 8 5 121110 6 9112

One More Operation

• Merge two heaps. Ideas?
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Merge

Given two heaps, merge them into one 
heap
– first attempt: insert each element of the 

smaller heap into the larger. 
runtime:

– second attempt: concatenate heaps’ arrays 
and run buildHeap.
runtime:

How about O(log n) time?

Idea: Hang a New Tree
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Now, just 
percolate down!
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Idea: Hang a New Tree
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Problem?
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Leftist Heaps

• Idea: 

• Leftist heap:
– almost all nodes are on the left

– all the merging work is on the right

make it so that all the work you 
have to do in maintaining a heap 
is in one small part
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the null path length (npl) of a node is the number 
of nodes between it and a null in the tree

Random Definition:
Null Path Length

• npl(null) = -1
• npl(leaf) = 0
• npl(single-child 

node) = 0
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another way of looking at it:
npl is the height of complete 
subtree rooted at this node

0

Leftist Heap Properties

• Heap-order property
– parent’s priority value is � to childrens’ priority 

values
– result: minimum element is at the root

• Leftist property
– null path length of left subtree is � npl of right 

subtree
– result: tree is at least as “heavy” on the left as 

the right

Are leftist trees complete? Balanced?
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Leftist tree examples
NOT leftist leftist
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every subtree of a leftist 
tree is leftist, comrade!

Right Path in a Leftist Tree is Short
• If the right path has length at least

r , the tree has at least 2r - 1 nodes
• Proof by induction

Basis: r  = 1. Tree has at least
one node: 21 - 1 = 1

Inductive step: assume true for r ’  < r . The right subtree has a 
right path of at least r - 1 nodes, so it has at least 2r  - 1 - 1
nodes. The left subtree must also have a right path of at least
r  - 1 (otherwise, there is a null path of r  - 3, less than the 
right subtree). Again, the left has 2r  - 1 - 1 nodes. All told then, 
there are at least:

2r  - 1 - 1 + 2r  - 1 - 1 + 1 = 2r - 1

• So, a leftist tree with at least n nodes has a right 
path of at most l og n nodes
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Whew!

To Do

• Unix development Tutorial
– Tuesday – 10:50am – Sieg 322

• Finish Project I for Wednesday
• Read chapters 1 & 2
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Coming Up

• Theory!
• Proof by Induction
• Asymptotic Analysis
• Quiz #2 (Thursday)


