
1

CSE 326: Data Structures
Lecture #4

Heaps more Priority Qs

Bart Niswonger
Summer Quarter 2001

Today’s Outline

• Return quizzes
• Things Bart Didn’t Finish on Friday

(insert & d-Heaps)
• Leftist Heaps
• Skew Heaps
• Comparing Heaps

2

Priority Queue ADT

• Priority Queue operations
– create
– destroy
– insert
– deleteMin
– is_empty

• Priority Queue property: for two elements in
the queue, x and y, if x has a lower priority
value than y, x will be deleted before y

F(7) E(5)
D(100) A(4)

B(6)

insert deleteMinG(9) C(3)

201412911

81067

54

2

2 4 5 7 6 10 8 11 9 12 14 2012

1 2 3 4 5 6 7 8 9 10 11 12

1

2 3

4 5 6 7

8 9

10 11 12

Nifty Storage Trick

• Calculations:
– child:

– parent:

– root:

– next free:

0

3

DeleteMin

201412911

81067

54

?
2

201412911

81067

54

2

pqueue. del et eMi n()

Insert

201412911

81067

54

2

201412911

81067

54

2

pqueue. i nser t (3)

?

4

Percolate Up

201412911

81067

54

2

? 201412911

8?67

54

2

10

201412911

8567

?4

2

10 201412911

8567

34

2

10

3

3

3

Insert Code
voi d i nser t (Obj ect o) {

asser t (! i sFul l ()) ;

s i ze++;

newPos =

per col at eUp(si ze, o) ;

Heap[newPos] = o;

}

i nt per col at eUp(i nt hol e,
Obj ect val) {

whi l e (hol e > 1 &&
val < Heap[hol e/ 2])

Heap[hol e] = Heap[hol e/ 2] ;
hol e / = 2;

}
r et ur n hol e;

}

runtime:

5

Other Priority Queue
Operations

• decreaseKey
– given the position of an object in the queue,

reduce its priority value

• increaseKey
– given the position of an an object in the queue,

increase its priority value

• remove
– given the position of an object in the queue,

remove it

• buildHeap
– given a set of items, build a heap

DecreaseKey, IncreaseKey,
and Remove

voi d decr easeKey(i nt obj) {

asser t (si ze >= obj) ;

t emp = Heap[obj] ;

newPos = per col at eUp(obj , t emp) ;

Heap[newPos] = t emp;

}

voi d i ncr easeKey(i nt obj) {

asser t (si ze >= obj) ;

t emp = Heap[obj] ;

newPos = per col at eDown(obj , t emp) ;

Heap[newPos] = t emp;

}

voi d r emove(i nt obj) {
asser t (si ze >= obj) ;
per col at eUp(obj ,

NEG_I NF_VAL) ;
del et eMi n() ;

}

6

BuildHeap
Floyd’s Method. Thank you, Floyd.

5 11 3 10 6 9 4 8 1 7 212

pretend it’s a heap and fix the heap-order property!

27184

96103

115

12

Build(this)Heap

67184

92103

115

12

671084

9213

115

12

1171084

9613

25

12

1171084

9653

21

12

7

Finally…

11710812

9654

23

1

runtime:

Thinking about Heaps

• Observations
– finding a child/parent index is a multiply/divide by

two
– operations jump widely through the heap
– each operation looks at only two new nodes
– inserts are at least as common as deleteMins

• Realities
– division and multiplication by powers of two are

fast
– looking at one new piece of data sucks in a cache

line
– with huge data sets, disk accesses dominate

8

4

9654

23

1

8 1012

7

11

Solution: d-Heaps

• Each node has d children
• Still representable by

array
• Good choices for d:

– optimize performance based on
of inserts/removes

– choose a power of two for
efficiency

– fit one set of children in a cache
line

– fit one set of children on a
memory page/disk block

3 7 2 8 5 121110 6 9112

One More Operation

• Merge two heaps. Ideas?

9

Merge

Given two heaps, merge them into one
heap
– first attempt: insert each element of the

smaller heap into the larger.
runtime:

– second attempt: concatenate heaps’ arrays
and run buildHeap.
runtime:

How about O(log n) time?

Idea: Hang a New Tree

1213106

115

2

+

1014

49

1

=

141213106

49115

12

?

10

Now, just
percolate down!

10

Idea: Hang a New Tree

1213106

115

2

+

106

115

2

=

1213

Problem?

1213 1213

Leftist Heaps

• Idea:

• Leftist heap:
– almost all nodes are on the left

– all the merging work is on the right

make it so that all the work you
have to do in maintaining a heap
is in one small part

11

the null path length (npl) of a node is the number
of nodes between it and a null in the tree

Random Definition:
Null Path Length

• npl(null) = -1
• npl(leaf) = 0
• npl(single-child

node) = 0

000

001

11

2

another way of looking at it:
npl is the height of complete
subtree rooted at this node

0

Leftist Heap Properties

• Heap-order property
– parent’s priority value is � to childrens’ priority

values
– result: minimum element is at the root

• Leftist property
– null path length of left subtree is � npl of right

subtree
– result: tree is at least as “heavy” on the left as

the right

Are leftist trees complete? Balanced?

12

Leftist tree examples
NOT leftist leftist

00

001

11

2

0

0

000

11

2

1

000

0

0

0

0

0

1

0

leftist

0

every subtree of a leftist
tree is leftist, comrade!

Right Path in a Leftist Tree is Short
• If the right path has length at least

r , the tree has at least 2r - 1 nodes
• Proof by induction

Basis: r = 1. Tree has at least
one node: 21 - 1 = 1

Inductive step: assume true for r ’ < r . The right subtree has a
right path of at least r - 1 nodes, so it has at least 2r - 1 - 1
nodes. The left subtree must also have a right path of at least
r - 1 (otherwise, there is a null path of r - 3, less than the
right subtree). Again, the left has 2r - 1 - 1 nodes. All told then,
there are at least:

2r - 1 - 1 + 2r - 1 - 1 + 1 = 2r - 1

• So, a leftist tree with at least n nodes has a right
path of at most l og n nodes

0

000

11

2

1

00

13

Whew!

To Do

• Unix development Tutorial
– Tuesday – 10:50am – Sieg 322

• Finish Project I for Wednesday
• Read chapters 1 & 2

14

Coming Up

• Theory!
• Proof by Induction
• Asymptotic Analysis
• Quiz #2 (Thursday)

