CSE 326: Data Structures Lecture \#4 Heaps more Priority Qs

Bart Niswonger
Summer Quarter 2001

Today's Outline

- Return quizzes
- Things Bart Didn’t Finish on Friday (insert \& d-Heaps)
- Leftist Heaps
- Skew Heaps
- Comparing Heaps

Priority Queue ADT

- Priority Queue operations
- create
- destroy
- insert
- deleteMin

- is_empty
- Priority Queue property: for two elements in the queue, x and y, if x has a lower priority value than y, x will be deleted before y

Nifty Storage Trick

- Calculations:
- child:
- parent:
- root:
- next free:

0	1	2	3	4	5	6	7	8	9	10	11	12	
12	2	4	5	7	6	10	8	11	9	12	14	20	

Insert Code

void insert (Object o) \{ assert(!isFull());
size++;
newPos =
percolateUp (size,o);
Heap[newPos] $=0$;
\}

```
int percolateUp(int hole,
                                    Object val) {
    while (hole > 1 &&
                            val < Heap[hole/2])
        Heap[hole] = Heap[hole/2];
        hole /= 2;
    }
    return hole;
}
```

runtime:

Other Priority Queue Operations

- decreaseKey
- given the position of an object in the queue, reduce its priority value
- increaseKey
- given the position of an an object in the queue, increase its priority value
- remove
- given the position of an object in the queue, remove it
- buildHeap
- given a set of items, build a heap

DecreaseKey, IncreaseKey, and Remove

```
void decreaseKey(int obj) {
    assert(size >= obj);
    temp = Heap[obj];
    newPos = percolateUp(obj, temp);
    Heap[newPos] = temp;
}
void increaseKey(int obj) {
    assert(size >= obj);
    temp = Heap[obj];
    newPos = percolateDown (obj, temp);
    Heap[newPos] = temp;
}
```


BuildHeap

Floyd's Method. Thank you, Floyd.

12	5	11	3	10	6	9	4	8	1	7	2

pretend it's a heap and fix the heap-order property!

Finally...

runtime:

Thinking about Heaps

- Observations
- finding a child/parent index is a multiply/divide by two
- operations jump widely through the heap
- each operation looks at only two new nodes
- inserts are at least as common as deleteMins
- Realities
- division and multiplication by powers of two are fast
- looking at one new piece of data sucks in a cache line
- with huge data sets, disk accesses dominate

Solution: d-Heaps

- Each node has d children
- Still representable by array
- Good choices for d :
- optimize performance based on \# of inserts/removes
- choose a power of two for efficiency

- fit one set of children in a cache line
- fit one set of children on a memory page/disk block

One More Operation

- Merge two heaps. Ideas?

Merge

Given two heaps, merge them into one heap

- first attempt: insert each element of the smaller heap into the larger.
runtime:
- second attempt: concatenate heaps' arrays and run buildHeap. runtime:

Idea: Hang a New Tree

Problem?

Leftist Heaps

- Idea:
make it so that all the work you have to do in maintaining a heap is in one small part
- Leftist heap:
- almost all nodes are on the left
- all the merging work is on the right

Random Definition: Null Path Length

the null path length ($n p l$) of a node is the number of nodes between it and a null in the tree

- $n \mathrm{nl}($ null $)=-1$
- npl(leaf) = 0
- npl(single-child node) $=0$
another way of looking at it: npl is the height of complete
 subtree rooted at this node

Leftist Heap Properties

- Heap-order property
- parent's priority value is \leq to childrens' priority values
- result: minimum element is at the root
- Leftist property
- null path length of left subtree is $\geq \mathrm{npl}$ of right subtree
- result: tree is at least as "heavy" on the left as the right

Are leftist trees complete? Balanced?

Leftist tree examples

Right Path in a Leftist Tree is Short

- If the right path has length at least
\mathbf{r}, the tree has at least $\mathbf{2}^{\mathbf{r}} \mathbf{- 1}$ nodes
- Proof by induction

Basis: $\mathbf{r}=1$. Tree has at least
one node: $\mathbf{2 ~}^{\mathbf{1}}$ - $\mathbf{1}=1$

Inductive step: assume true for $\boldsymbol{r}^{\prime}<\mathbf{r}$. The right subtree has a right path of at least $r-1$ nodes, so it has at least $2^{r-1}-1$ nodes. The left subtree must also have a right path of at least $\mathbf{r}-\mathbf{1}$ (otherwise, there is a null path of $\mathbf{r}-3$, less than the right subtree). Again, the left has $2^{r-1}-1$ nodes. All told then, there are at least:

$$
2^{x-1}-1+2^{x-1}-1+1=2^{x}-1
$$

- So, a leftist tree with at least n nodes has a right path of at most $\log \mathrm{n}$ nodes

Whew!

To Do

- Unix development Tutorial
- Tuesday - 10:50am - Sieg 322
- Finish Project I for Wednesday
- Read chapters 1 \& 2

Coming Up

- Theory!
- Proof by Induction
- Asymptotic Analysis
- Quiz \#2 (Thursday)

