CSE 326: Data Structures
Lecture #3
Mind your Priority Qs

Bart Niswonger
Summer Quarter 2001

Today’s Outline

e The First Quiz!

* Things Bart Didn’'t Get to on Wednesday
(Priority Queues & Heaps)

» Extra heap operations
» d-Heaps

Back to Queues

« Some applications
— ordering CPU jobs
— simulating events
— picking the next search site
* Problems?
— short jobs should go first
— earliest (simulated time) events should go first
— most promising sites should be searched first

?
per AT
Re™*™"" Driority Queue ADT

 Priority Queue operations

— create
_ F(7) E(5) _
— destro
. Yo go)inEt L pio0) Ag) [deeeMin oo
— Insert B(6)
— deleteMin
— is_empty

 Priority Queue property: for two elements in
the queue, x and vy, if x has a lower priority
value thany, x will be deleted before y

Applications of the Priority Q

Hold jobs for a printer in order of length

Store packets on network routers in
order of urgency

Simulate events

Select symbols for compression
Sort numbers

Anything greedy

Naive Priority Q Data Structures

e Unsorted list:
— insert:

— deleteMin:

e Sorted list:
— insert;

— deleteMin:

Binary Search Tree Priority Q
Data Structure (that's a mouthful)

insert;

deleteMin:;

Binary Heap Priority Q Data
Structure

» Heap-order property
— parent’s key is less than
children’s keys
— result: minimum is
always at the top

e Structure property

— complete tree with fringe
nodes packed to the left

— result: depth is always
O(log n); next open
location always known

Nifty Storage Trick

e Calculations:
— child:

— parent:

— root:

— next free:

121 214|576

DeleteMin

pqueue. del et eM n()

Percolate Down

DeleteMin Code

bj ect deleteMn() {
assert (!isEnpty());
r et ur nval Heapl[1] ;
si ze--;
newPos
per col at eDown(1,
Heap[si ze+1]) ;
Heap[newPos]
Heap[si ze + 1];
return returnVal;

runtime:

int percolateDown(int hole, Ooject val) {
while (2 * hole <= size) {
left =2 * hole;
right = left + 1
if (right <= size &&
Heap[right] < Heap[left])
target = right;
el se
target = left;

if (Heap[target] < val) {
Heap[hol e] = Heap[target];
hole = target;

}

el se
br eak;

}

return hole;

Insert

pqueue. i nsert (3)

(5)

N ©® W 6

DOV

e
@ ©® ® ©
VOVVOO

Percolate Up

(2

(4)
—> _>

m
AAL AN

Insert Code

voi d insert(Qbject 0) { i nt percol ateUp(int hole,
; . hj ect val) {
I
a§sert(.|sFuII()), while (hole > 1 &&
Sl zet+ val < Heap[hol e/ 2])
newPos = Heap[hol e] = Heap[hol e/ 2];
per col at eUp(si ze, 0) ;) hole /= 2;
Heap[newPos] = o; return hole;
} }

runtime:

Changing Priorities

* In many applications the priority of an object
in a priority queue may change over time

— if ajob has been sitting in the printer queue for a
long time increase its priority

— unix “renice”

» Must have some (separate) way of find the
position in the queue of the object to change
(e.g. a hash table)

Other Priority Queue
Operations

decreaseKey

— given the position of an object in the queue,
reduce its priority value

increaseKey

— given the position of an an object in the queue,
increase its priority value

remove

— given the position of an object in the queue,
remove it

buildHeap
— given a set of items, build a heap

DecreaseKey, IncreaseKey,
and Remove

voi d decreaseKey(int obj) { voi d renove(int obj) {

. _ . assert(size >= obj);
assert(size >) obj)3 per col at eUp(obj ,

tenp = Heap[obj]; NEG | NF_VAL);

newPos = percol at eUp(obj, tenp); del eteM n();
Heap[newPos] = tenp; }
}

voi d i ncreaseKey(int obj) {
assert(size >= obj);
tenp = Heap[obj];
newPos = percol at eDown(obj, tenp);
Heap[newPos] = tenp;

BuildHeap
Floyd’s Method. Thank you, Floyd.
12(5(11| 3 (106 | 9| 4|81 2
pretend it’s a heap and fix the heap-order properﬁ)

(5) (1]
3 @ ©® @
OEeEOOO

10

Build(this)Heap

Finally...

@ & ® @
LEWLWOW

runtime:

11

Thinking about Heaps

e Observations

— finding a child/parent index is a multiply/divide by
two

— operations jump widely through the heap
— each operation looks at only two new nodes
— inserts are at least as common as deleteMins

» Realities

— division and multiplication by powers of two are
fast

— looking at one new piece of data sucks in a cache
line

— with huge data sets, disk accesses dominate

Solution: d-Heaps

« Each node has d children ©.
« Still representable by
array (3) 0. (2

» Good choices for d:

— optimize performance based on @ @ 6 @ @ @ @ @

of inserts/removes

— choose a power of two for 12[1]3]7]2]4]8]5]1211]10[6]9]
efficiency

— fit one set of children in a cache
line

— fit one set of children on a
memory page/disk block

12

One More Operation

Merge two heaps. Ideas?

To Do

Read chapter 6 in the book
Have teams

Do project 1

Ask questions!

13

Coming Up

Mergeable heaps

Dictionary ADT and Self-Balancing
Trees

Unix Development Tutorial (Tuesday)
First project due (next Wednesday)

14

