CSE 326: Data Structures Lecture \#21 One Last Gasp

Bart Niswonger Summer Quarter 2001

Today's Outline

- Algorithm Design (from Friday)
- Dynamic Programming
- Randomized
- Backtracking
- "Advanced" Data Structures

Treap Dictionary Data Structure

- Treaps have the
heap in yellow; search tree in blue

Tree + Heap... Why Bother?

Insert data in sorted order into a treap; what shape tree comes out?

Treap Insert

- Choose a random priority
- Insert as in normal BST
- Rotate up until heap order is restored insert(15)

Treap Delete

- Find the key
- Increase its value to ∞
- Rotate it to the fringe

Treap Summary

- Implements Dictionary ADT
- insert in expected O(log n) time
- delete in expected $O(\log n)$ time
- find in expected $O(\log n)$ time
- Memory use
- O(1) per node
- about the cost of AVL trees
- Complexity?

Multi-D Search ADT

- Dictionary operations
- create
- destroy
- find
- insert
- delete
- range queries

- Each item has k keys for a k-dimensional search tree
- Searches can be performed on one, some, or all the keys or on ranges of the keys

Applications of Multi-D Search

- Astronomy (simulation of galaxies) - 3 dimensions
- Protein folding in molecular biology - 3 dimensions
- Lossy data compression - 4 to 64 dimensions
- Image processing - 2 dimensions
- Graphics - 2 or 3 dimensions
- Animation - 3 to 4 dimensions
- Geographical databases - 2 or 3 dimensions
- Web searching - 200 or more dimensions

Range Query

A range query is a search in a dictionary in which the exact key may not be entirely specified.

Range queries are the primary interface with multi-D data structures.

$\underline{\text { Range Query: Two Dimensions }}$

- Search for items based on just one key
- Search for items based on ranges for all keys
- Search for items based on a function of several keys: e.g., a circular range query

Range Querying in 1-D

Find everything in the rectangle...

Range Querying in 1-D: BST
Find everything in the rectangle...

2-D Range Querying in 2-D

k-D Trees

- Split on the next dimension at each succeeding level
- If building in batch, choose the median along the current dimension at each level
- guarantees logarithmic height and balanced tree
- In general, add as in a BST

Search every partition that intersects the rectangle.
Check whether each node (including leaves) falls into the range.

Other Shapes for Range Querying

Find in a k-D Tree

Node *\& find(const keyVector \& keys,
Node *\& root) \{
int dim = root->dimension; if (root == NULL) return root;
else if (root->keys == keys) return root; else if (keys[dim] < root->keys[dim]) return find(keys, root->left);


```
        return find(keys, root->right);
```

\}
runtime:

Find Example

Quad Trees

- Split on all (two) dimensions at each level
- Split key space into equal size partitions (quadrants)
- Add a new node by adding to a leaf, and, if the leaf is already occupied, split until only one node per leaf

Building a Quad Tree (1/5)

2-D Range Querying in Quad Trees

Find in a Quad Tree

find ($<x, y>, ~ r o o t)$ finds the node which has the given pair of keys in it or returns quadrant where the point should be if there is no such node

Node *\& find (Key x, Key y, Node ${ }^{*} \&$ root) $\{$ if (root $==$ NULL)
return root; // Empty tree
if (root->isLeaf)
Compares
against center;
return root; // Key may not actually be here
always makes
the same choice on ties.
int quad $=$ getQuadrant (x, y, root); return find(x, y, root->quadrants [quad]);
\}
runtime:

Quad Trees Can Suck

suck factor:

Find Example

$$
\text { find }(<10,2>) \text { (i.e., c) }
$$

$$
\text { find }(<5,6>) \text { (i.e., d) }
$$

Quad Trees vs. k-D Trees

- k-D Trees
- Density balanced trees
- Number of nodes is $\mathrm{O}(\mathrm{n})$ where n is the number of points
- Height of the tree is $\mathrm{O}(\log \mathrm{n})$ with batch insertion
- Supports insert, find, nearest neighbor, range queries
- Quad Trees
- Number of nodes is $O(n(1+\log (\Delta / n)))$ where n is the number of points and Δ is the ratio of the width (or height) of the key space and the smallest distance between two points
- Height of the tree is $\mathrm{O}(\log \mathrm{n}+\log \Delta)$
- Supports insert, delete, find, nearest neighbor, range queries

To Do

- Project IV
- Package up your executable and turn it in!
- Finish reading Chapter 12
- Study for the final!

Coming Up

- Course Discussion
- Final - Friday, this week!

