
1

CSE 326: Data Structures
Lecture #21

One Last Gasp

Bart Niswonger
Summer Quarter 2001

Today’s Outline

• Algorithm Design (from Friday)
– Dynamic Programming

– Randomized

– Backtracking

• “Advanced” Data Structures

2

Treap Dictionary Data Structure

• Treaps have the
binary search tree
– binary tree property
– search tree property

• Treaps also have the
heap-order property!
– randomly assigned

priorities

15
12

10
30

9
15

7
8

4
18

6
7

2
9

heap in yellow; search tree in blue

priority
key

Legend:

Tree + Heap… Why Bother?

Insert data in sorted order into a treap;
what shape tree comes out?

6
7

insert(7)

6
7

insert(8)

7
8

6
7

insert(9)

7
8

2
9

6
7

insert(12)

7
8

2
9

15
12

priority
key

Legend:

3

Treap Insert
• Choose a random priority
• Insert as in normal BST
• Rotate up until heap order is restored

6
7

insert(15)

7
8

2
9

15
12

6
7

7
8

2
9

15
12

9
15

6
7

7
8

2
9

9
15

15
12

Treap Delete
• Find the key
• Increase its value to
�

• Rotate it to the fringe
• Snip it off

delete(9)

6
7

7
8

2 � �

9
9

15

15
12

7
8

6
7

�

9

9
15

15
127

8

6
7

9
15

�

9
15
12

7
8

6
7

9
15

15
12

�

9

7
8

6
7

9
15

15
12

4

Treap Summary
• Implements Dictionary ADT

– insert in expected O(log n) time
– delete in expected O(log n) time
– find in expected O(log n) time

• Memory use
– O(1) per node
– about the cost of AVL trees

• Complexity?

Multi-D Search ADT
• Dictionary operations

– create
– destroy
– find
– insert
– delete
– range queries

• Each item has k keys for a k-dimensional
search tree

• Searches can be performed on one, some, or
all the keys or on ranges of the keys

9,13,64,2

5,78,21,94,4

8,42,5

5,2

5

Applications of Multi-D Search

• Astronomy (simulation of galaxies) - 3
dimensions

• Protein folding in molecular biology - 3
dimensions

• Lossy data compression - 4 to 64 dimensions
• Image processing - 2 dimensions
• Graphics - 2 or 3 dimensions
• Animation - 3 to 4 dimensions
• Geographical databases - 2 or 3 dimensions
• Web searching - 200 or more dimensions

Range Query

A range query is a search in a dictionary
in which the exact key may not be

entirely specified.

Range queries are the primary interface
with multi-D data structures.

6

Range Query: Two Dimensions

• Search for items based
on just one key

• Search for items based
on ranges for all keys

• Search for items based
on a function of several
keys: e.g., a circular
range query

x

Range Querying in 1-D
Find everything in the rectangle…

7

x

Range Querying in 1-D: BST
Find everything in the rectangle…

x

y

1-D Range Querying in 2-D

8

x

y

2-D Range Querying in 2-D

k-D Trees

• Split on the next dimension at each
succeeding level

• If building in batch, choose the median
along the current dimension at each level
– guarantees logarithmic height and balanced

tree

• In general, add as in a BST
k-D tree node

dimension

left right

keys value

The dimension that
this node splits on

9

x

y

Building a 2-D Tree (1/4)

x

y

Building a 2-D Tree (2/4)

10

x

y

Building a 2-D Tree (3/4)

x

y

Building a 2-D Tree (4/4)

11

k-D Tree

mfkg

hi

e

cj d la b

a d

l

cb

e

h
f

m
j

g
i

k

x

y

2-D Range Querying in 2-D Trees

Search every partition that intersects the rectangle.
Check whether each node (including leaves) falls into the range.

12

x

y

Other Shapes for Range Querying

Search every partition that intersects the shape (circle).
Check whether each node (including leaves) falls into the shape.

Find in a k-D Tree

f i nd(<x1, x2, …, xk>, r oot)

finds the node which has the
given set of keys in it or
returns nul l if there is no such
node

Node * & f i nd(const keyVect or & keys,

Node * & r oot) {

i nt di m = r oot - >di mensi on;

i f (r oot == NULL)

r et ur n r oot ;

el se i f (r oot - >keys == keys)

r et ur n r oot ;

el se i f (keys[di m] < r oot - >keys[di m])

r et ur n f i nd(keys, r oot - >l ef t) ;

el se

r et ur n f i nd(keys, r oot - >r i ght) ;

}

runtime:

13

k-D Trees Can Suck
(but not when built in batch!)

insert(<5,0>)

insert(<6,9>)

insert(<9,3>)

insert(<6,5>)

insert(<7,7>)

insert(<8,6>)

6,9

5,0

6,5

9,3

8,6

7,7

suck factor:

Find Example
find(<3,6>)
find(<0,10>)

5,78,21,94,4

8,42,5

5,2

9,13,64,2

14

Quad Trees
• Split on all (two) dimensions at each level

• Split key space into equal size partitions
(quadrants)

• Add a new node by adding to a leaf, and, if the
leaf is already occupied, split until only one node
per leaf quad tree node

Quadrants:

0,1 1,1

0,0 1,0

quadrant

0,01,00,11,1

keys value

Center

x yCenter:

x

y

Building a Quad Tree (1/5)

15

x

y

Building a Quad Tree (2/5)

x

y

Building a Quad Tree (3/5)

16

x

y

Building a Quad Tree (4/5)

x

y

Building a Quad Tree (5/5)

17

Quad Tree Example

a

g

b

e
f

d

c
ga

fed

cb

2-D Range Querying in Quad Trees

x

y

18

Node * & f i nd(Key x, Key y, Node * & r oot) {

i f (r oot == NULL)

r et ur n r oot ; / / Empt y t r ee

i f (r oot - >i sLeaf)

r et ur n r oot ; / / Key may not act ual l y be
her e

i nt quad = get Quadr ant (x, y, r oot) ;

r et ur n f i nd(x, y, r oot - >quadr ant s[quad]) ;

}

Find in a Quad Tree
f i nd(<x, y>, r oot) finds the node which has

the given pair of keys in it or returns quadrant
where the point should be if there is no such
node

runtime:

Compares
against center;
always makes
the same choice
on ties.

Quad Trees Can Suck

b

a

suck factor:

19

Find Example

a

g

b

e
f

d

c
ga

fed

cb

find(<10,2>) (i.e., c)
find(<5,6>) (i.e., d)

Insert Example

ggga

insert(<10,7>,x)

… …

a

g

b

e
f

d

c

x

gx
• Find the spot where the node should go.
• If the space is unoccupied, insert the node.
• If it is occupied, split until the existing node

separates from the new one.

20

Delete Example

a

g

b

e
f

d

c

ga

fed

cb

delete(<10,2>)(i.e., c)

• Find and delete the node.
• If its parent has just one

child, delete it.
• Propagate!

Nearest Neighbor Search

ga

fed

cb

getNearestNeighbor(<1,4>)

g

b

f

d

c

• Find a nearby node (do a find).
• Do a circular range query.
• As you get results, tighten the circle.
• Continue until no closer node in query.

a

e

Works on
k-D Trees, too!

21

Quad Trees vs. k-D Trees
• k-D Trees

– Density balanced trees
– Number of nodes is O(n) where n is the number of points
– Height of the tree is O(log n) with batch insertion
– Supports insert, find, nearest neighbor, range queries

• Quad Trees
– Number of nodes is O(n(1+ log(� /n))) where n is the

number of points and � is the ratio of the width (or height)
of the key space and the smallest distance between two
points

– Height of the tree is O(log n + log �)
– Supports insert, delete, find, nearest neighbor, range

queries

To Do

• Project IV
– Package up your executable and turn it in!

• Finish reading Chapter 12
• Study for the final!

22

Coming Up

• Course Discussion

• Final – Friday, this week!

