CSE 326: Data Structures
Lecture #20
Problem Solving

Bart Niswonger
Summer Quarter 2001

Today’s Outline

 Algorithm Design
— Dynamic Programming
— Randomized
— Backtracking

Dynamic Programming (Memoizing)

» Define problem in terms of smaller
subproblems

» Solve and record solution for base cases

 Build solutions for subproblems up from
solutions to smaller subproblems

Can improve runtime of divide & conquer
algorithms that have shared subproblems
with optimal substructure.

Usually involves a table of subproblem
solutions.

Dynamic Programming in Action

Sequence Alignment
Optimal Binary Search Tree
Fibonacci numbers

Many, many optimization problems

— Databases: finding the optimal way to answer a
query

— Workflow: the optimal order of operations to
construct some complex object

All pairs shortest path

Recursive All-Pairs Shortest Path

» The shortest path from A to B is either
— Non-existent (if the graph is not connected)

— The shortest path from A to some node n plus the
shortest path from n to B

ldea

(AB)2 (AB)?2 (AB) 2
> (AF)x (AF) 4 (AF) 4
(F.G)x (FG)12 (FG)7

 d(i,j,1) = cost of edge(i,))

d(i,j,k) = min(d(i,j,k — 1),
d(i,n,k = 1) + d(n,j,k — 1))

Pseudocode

int dist(node* i, node *j, int k)
i nt distance;
if (k<=1) distance = weight(i,j)
el se {
di stance = dist(i,j,k-1)
foreach node n st path(i,n,k-1) & path(n,j,k-1) {
i 2n2j Distance = dist(i,n,k-1) + dist(n,j,k-1)
if (distance < i2n2j D stance)
di stance = i 2n2j D stance
}
}

return di stance

Floyd-Warshall

N

N
o
Njolol RO

o
O|~J| O|F

T O|MMmOoOO0|m >

Floyd-Warshall

0

40

2

3

1
9
7

8

A/B|C/D|E|F|G|H

Bl12(0|9

Floyd-Warshall

B

B

G G

Cc|C

A/B|C/D|E|F|G|H

Backtracking (a.k.a. Systematic Search)

1. Incrementally establish a solution

2. If complete solution is constructed, succeed!

3. If solution fails, roll back and alter recent
choices

e Usually than brute
force.

« Keyto success is pruning the search space.

« Key to pruning is domain knowledge and
learning!

Backtracking in Action

* Depth First Search
« DPLL: Satisfiability Solving
* a-B Search (Game Search)

Game Search

Search space is composed of board
configurations

Transitions are moves
Levels alternate between us and them

We can evaluate any given board
configuration according to a scoring
heuristic

How should we decide the next move?

Backtracking Game Search (MiniMax)

o-B Pruned Game Search

Randomized Algorithms

» Define a property (or subroutine) in an algorithm

« Sample or randomly modify the property

» Use altered property as if it were the true
property

Can transform average case runtimes into
expected runtimes (remove input dependency)

Sometimes allows substantial speedup in
exchange for

Randomization in Action

Treaps

Quicksort
Randomized back-off
Primality testing

Properties of Primes

Pisaprime0 < A< Pand0 < X < P

Then:
APl =1 (nod P)

And, the only solutionsto X*> = 1 (nod P) are:
X=1land X =P - 1

Calculating Powers

Hugel nt pow(Hugel nt x, Hugelnt n, Hugel nt nodul 0)

{
if (n==0)

return 1,
if (n==1)
return x; If1 < x < nmodulo - 1
Hugel nt squared = x * x % nodul o; //butsquared == 1,
if (isEven(n)) /I then nodul o isn’t prime!
return pow(squared, n / 2, nodul 0);
el se

return (powsquared, n/2, nodulo) * x) % nodul o;

Checking Primality

Systematic algorithm:
— For prime P, for all Asuchthat 0<A<P
— Calculate AP mod P using pow

— Check at each step of pow and at end for primality
conditions

Randomized algorithm: use just one random A
If the randomized algorithm reports failure, then P really isn’'t prime
If the randomized algorithm reports success, then P
might be prime.
— P is prime with probability > %
— Each new A has independent probability of false positive

10

Evaluating Randomized Primality Testing

Your probability of being struck by lightning this
year: 0.00004%

Your probability that a number that tests prime
11 times in a row is actually not prime:
0.00003%

Your probability of winning a lottery of 1 million
people five times in a row: 1 in 2100

Your probability that a number that tests prime

50 times in a row is actually not prime: 1 in
2100

Randomized Greedy Algorithms:
Simulated Annealing

11

Randomized Backtracking:
Heavy-Tailed Distributions

Some backtracking algorithms have a few (fruitless)
branches that are very large, both deep and broad.

Algorithms which choose randomly at a split point will
have a small probability of getting caught in one of
these branches.

Therefore, some runs finish very quickly, most runs
take some time, and a few runs take orders of
magnitude more time than the median.

Solution: cut off long runs and reseed the randomizer.

To Do

Project IV

— Create a fearsome runner strategy... and
implement it!

Finish reading Chapter 10
Start reading Chapter 12
Study for the final!

Come to the movie TONIGHT

12

Coming Up

» “Advanced” Data Structures

» Final — Friday, one week!

* Movie!! (& pizza)

13

