
1

CSE 326: Data Structures
Lecture #20

Problem Solving

Bart Niswonger
Summer Quarter 2001

Today’s Outline

• Algorithm Design
– Dynamic Programming

– Randomized

– Backtracking

2

Dynamic Programming (Memoizing)

• Define problem in terms of smaller
subproblems

• Solve and record solution for base cases
• Build solutions for subproblems up from

solutions to smaller subproblems

Can improve runtime of divide & conquer
algorithms that have shared subproblems
with optimal substructure.

Usually involves a table of subproblem
solutions.

Dynamic Programming in Action

• Sequence Alignment
• Optimal Binary Search Tree
• Fibonacci numbers
• Many, many optimization problems

– Databases: finding the optimal way to answer a
query

– Workflow: the optimal order of operations to
construct some complex object

• All pairs shortest path

3

Recursive All-Pairs Shortest Path

Observation:

• The shortest path from A to B is either
– Non-existent (if the graph is not connected)

– Direct
– The shortest path from A to some node n plus the

shortest path from n to B

C

B

A

D

2
1

9

2

k = 1
(A,B) 2
(A,F) x
(F,G) x
…

Idea

A

C

B

D

F

H

G
E

2

3

1

4

9

4

1

9

4
2

7

2

8

k = 3
(A,B) 2
(A,F) 4
(F,G) 7
…

k = 2
(A,B) 2
(A,F) 4
(F,G) 12
…

d(i,j,1) = cost of edge(i,j)
d(i,j,k) = min(d(i,j,k – 1),

d(i,n,k – 1) + d(n,j,k – 1))

4

Pseudocode

i nt di st (node* i , node * j , i nt k)
i nt di st ance;
i f (k <= 1) di st ance = wei ght (i , j)
el se {

di st ance = di st (i , j , k- 1)
f or each node n st pat h(i , n, k- 1) & pat h(n, j , k- 1) {

i 2n2j Di st ance = di st (i , n, k- 1) + di st (n, j , k- 1)
i f (di st ance < i 2n2j Di st ance)
di st ance = i 2n2j Di st ance

}
}
r et ur n di st ance

Floyd-Warshall

A

C

B

D

F

H

G
E

2

3

1

4

9

8

1

9

4
2

7

2

2

04H

038G

202F

8071E

702D

920C

21902B

4120A

HGFEDCBA

5

Floyd-Warshall

A

C

B

D

F

H

G
E

2

3

1

4

9

8

1

9

4
2

7

2

2

04H

038G

202F

8071E

702D

920C

21902B

4120A

HGFEDCBA

Floyd-Warshall

A

C

B

D

F

H

G
E

2

3

1

4

9

8

1

9

4
2

7

2

2

GH

GGG

FFF

EEEE

DDD

CCC

BBBBB

AAAA

HGFEDCBA

6

Backtracking (a.k.a. Systematic Search)

1. Incrementally establish a solution
2. If complete solution is constructed, succeed!
3. If solution fails, roll back and alter recent

choices

• Usually asymptotically no better than brute
force.

• Key to success is pruning the search space.
• Key to pruning is domain knowledge and

learning!

Backtracking in Action

• Depth First Search
• DPLL: Satisfiability Solving

• �-� Search (Game Search)

7

Game Search

• Search space is composed of board
configurations

• Transitions are moves
• Levels alternate between us and them
• We can evaluate any given board

configuration according to a scoring
heuristic

How should we decide the next move?

Backtracking Game Search (MiniMax)

12

us

them

us

12 112

122

2 121 2 11 11 12 111

1 1 1 11 2 11

1 1

11

1

1 2 11

1 1

8

�-� Pruned Game Search

12

us

them

us

12 112

122

2 121 2 11 11 12 111

1 1 1 11 2 11

1 1

11

1

1 2 11

1 1

Randomized Algorithms

• Define a property (or subroutine) in an algorithm
• Sample or randomly modify the property
• Use altered property as if it were the true

property

Can transform average case runtimes into
expected runtimes (remove input dependency)

Sometimes allows substantial speedup in
exchange for probabilistic unsoundness

9

Randomization in Action

• Treaps
• Quicksort
• Randomized back-off
• Primality testing

Properties of Primes

P is a prime 0 < A < P and 0 < X < P

Then:
AP- 1 = 1 (mod P)

And, the only solutions to X2 = 1 (mod P) are:

X = 1 and X = P - 1

10

Calculating Powers
HugeI nt pow(HugeI nt x, HugeI nt n, HugeI nt modul o)
{

i f (n == 0)
r et ur n 1;

i f (n == 1)
r et ur n x;

HugeI nt squar ed = x * x % modul o;
i f (i sEven(n))

r et ur n pow(squar ed, n / 2, modul o) ;
el se

r et ur n (pow(squar ed, n/ 2, modul o) * x) % modul o;
}

// If 1 < x < modul o - 1
// but squar ed == 1,
// then modul o isn’t prime!

Checking Primality
Systematic algorithm:

– For prime P, for all A such that 0 < A < P
– Calculate AP-1 mod P using pow
– Check at each step of pow and at end for primality

conditions

Randomized algorithm: use just one random A
If the randomized algorithm reports failure, then P really isn’t prime.

If the randomized algorithm reports success, then P
might be prime.
– P is prime with probability > ¾
– Each new A has independent probability of false positive

11

Evaluating Randomized Primality Testing

Your probability of being struck by lightning this
year: 0.00004%

Your probability that a number that tests prime
11 times in a row is actually not prime:
0.00003%

Your probability of winning a lottery of 1 million
people five times in a row: 1 in 2100

Your probability that a number that tests prime
50 times in a row is actually not prime: 1 in
2100

Randomized Greedy Algorithms:
Simulated Annealing

-10

-5

0

5

10

15

20

25

12

Randomized Backtracking:
Heavy-Tailed Distributions

Some backtracking algorithms have a few (fruitless)
branches that are very large, both deep and broad.

Algorithms which choose randomly at a split point will
have a small probability of getting caught in one of
these branches.

Therefore, some runs finish very quickly, most runs
take some time, and a few runs take orders of
magnitude more time than the median.

Solution: cut off long runs and reseed the randomizer.

To Do

• Project IV
– Create a fearsome runner strategy… and

implement it!

• Finish reading Chapter 10
• Start reading Chapter 12
• Study for the final!
• Come to the movie TONIGHT

13

Coming Up

• “Advanced” Data Structures

• Final – Friday, one week!

• Movie!! (& pizza)

