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CSE 326: Data Structures
Lecture #20

Problem Solving

Bart Niswonger
Summer Quarter 2001

Today’s Outline

• Algorithm Design
– Dynamic Programming

– Randomized

– Backtracking
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Dynamic Programming (Memoizing)

• Define problem in terms of smaller 
subproblems

• Solve and record solution for base cases
• Build solutions for subproblems up from 

solutions to smaller subproblems

Can improve runtime of divide & conquer 
algorithms that have shared subproblems 
with optimal substructure.

Usually involves a table of subproblem 
solutions.

Dynamic Programming in Action

• Sequence Alignment
• Optimal Binary Search Tree
• Fibonacci numbers
• Many, many optimization problems

– Databases: finding the optimal way to answer a 
query

– Workflow: the optimal order of operations to 
construct some complex object

• All pairs shortest path
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Recursive All-Pairs Shortest Path

Observation:

• The shortest path from A to B is either
– Non-existent (if the graph is not connected)

– Direct
– The shortest path from A to some node n plus the 

shortest path from n to B
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k = 3
(A,B) 2
(A,F) 4
(F,G) 7
…

k = 2
(A,B) 2
(A,F) 4
(F,G) 12
…

d(i,j,1) = cost of edge(i,j)
d(i,j,k) = min( d(i,j,k – 1), 

d(i,n,k – 1) + d(n,j,k – 1))
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Pseudocode

i nt di st (  node*  i ,  node * j ,  i nt  k)
i nt di st ance;
i f  (  k <= 1 )  di st ance = wei ght ( i , j )
el se {

di st ance = di st ( i , j , k- 1)
f or each node n st pat h( i , n, k- 1)  & pat h( n, j , k- 1)  {

i 2n2j Di st ance = di st ( i , n, k- 1)  + di st ( n, j , k- 1)
i f  (  di st ance < i 2n2j Di st ance )  
di st ance = i 2n2j Di st ance

}
}
r et ur n di st ance
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Floyd-Warshall
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Backtracking (a.k.a. Systematic Search)

1. Incrementally establish a solution
2. If complete solution is constructed, succeed!
3. If solution fails, roll back and alter recent 

choices

• Usually asymptotically no better than brute 
force.

• Key to success is pruning the search space.
• Key to pruning is domain knowledge and 

learning!

Backtracking in Action

• Depth First Search
• DPLL: Satisfiability Solving

• �-� Search (Game Search)
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Game Search

• Search space is composed of board 
configurations

• Transitions are moves
• Levels alternate between us and them
• We can evaluate any given board 

configuration according to a scoring 
heuristic

How should we decide the next move?

Backtracking Game Search (MiniMax)
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�-� Pruned Game Search
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Randomized Algorithms

• Define a property (or subroutine) in an algorithm
• Sample or randomly modify the property
• Use altered property as if it were the true 

property

Can transform average case runtimes into 
expected runtimes (remove input dependency)

Sometimes allows substantial speedup in 
exchange for probabilistic unsoundness
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Randomization in Action

• Treaps
• Quicksort
• Randomized back-off
• Primality testing

Properties of Primes

P is a prime 0 < A < P and 0 < X < P

Then:
AP- 1 = 1 ( mod P)

And, the only solutions to X2 = 1 ( mod P) are: 

X = 1 and X = P - 1
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Calculating Powers
HugeI nt  pow( HugeI nt x,  HugeI nt n,  HugeI nt modul o)
{

i f  ( n == 0)
r et ur n 1;

i f  ( n == 1)
r et ur n x;

HugeI nt squar ed = x *  x % modul o;
i f  ( i sEven( n) )

r et ur n pow( squar ed,  n /  2,  modul o) ;
el se

r et ur n ( pow( squar ed,  n/ 2,  modul o)  *  x)  % modul o;
}

// If 1 < x < modul o - 1
// but squar ed == 1, 
// then modul o isn’t prime!

Checking Primality
Systematic algorithm:

– For prime P, for all A such that 0 < A < P
– Calculate AP-1 mod P using pow
– Check at each step of pow and at end for primality 

conditions

Randomized algorithm: use just one random A
If the randomized algorithm reports failure, then P really isn’t prime.

If the randomized algorithm reports success, then P 
might be prime.
– P is prime with probability > ¾
– Each new A has independent probability of false positive
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Evaluating Randomized Primality Testing

Your probability of being struck by lightning this 
year: 0.00004%

Your probability that a number that tests prime 
11 times in a row is actually not prime: 
0.00003%

Your probability of winning a lottery of 1 million 
people five times in a row: 1 in 2100

Your probability that a number that tests prime 
50 times in a row is actually not prime: 1 in 
2100

Randomized Greedy Algorithms:
Simulated Annealing
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Randomized Backtracking:
Heavy-Tailed Distributions

Some backtracking algorithms have a few (fruitless) 
branches that are very large, both deep and broad.

Algorithms which choose randomly at a split point will 
have a small probability of getting caught in one of 
these branches.

Therefore, some runs finish very quickly, most runs 
take some time, and a few runs take orders of 
magnitude more time than the median.

Solution: cut off long runs and reseed the randomizer.

To Do

• Project IV
– Create a fearsome runner strategy… and 

implement it!

• Finish reading Chapter 10
• Start reading Chapter 12
• Study for the final!
• Come to the movie TONIGHT



13

Coming Up

• “Advanced” Data Structures

• Final – Friday, one week!

• Movie!! (& pizza)


