
1

CSE 326: Data Structures
Lecture #19

Approaches to Graph
Exploration
Bart Niswonger

Summer Quarter 2001

Today’s Outline

• Stuff Bart didn’t finish Friday
• Algorithm Design

– Divide & Conquer

– Greedy

– Dynamic Programming

– Randomized

– Backtracking

2

Divide & Conquer

• Divide problem into multiple smaller parts

• Solve smaller parts
– Solve base cases directly
– Otherwise, solve subproblems recursively

• Merge solutions together (Conquer!)

Often leads to elegant and simple recursive
implementations.

Divide & Conquer in Action

• Binary Search
• Mergesort
• Quicksort
• buildHeap
• buildTree
• Closest points

3

Closest Points Problem
• Given:

– a group of points {(x1, y1), …, (xn, yn)}

• Return the distance between the closest pair of
points

.75

Closest Points Algorithm

Closest pair is:
– closest pair on left or
– closest pair on right or
– closest pair spanning the middle

runtime:

4

Closest Points Algorithm

Closest pair is:
– closest pair on left or
– closest pair on right or
– closest pair in middle strip within one

�
of each other

horizontally and vertically

runtime:

dL

dR

�
= min(dL, dR)

� �

�

Greedy Algorithms

Repeat until problem is solved:
– Measure options according to marginal value
– Commit to maximum

Greedy algorithms are normally fast and simple.

Sometimes appropriate as a heuristic solution
or to approximate the optimal solution.

5

Hill-Climbing

0

5

10

15

20

25
Global
Maximum

Local
Maximum

Greed in Action

• Kruskal’s Algorithm
• Dijkstra’s Algorithm
• Prim’s Algorithm
• Huffman Encodings
• Scheduling
• Best First Search
• A* Search

6

Huge Graphs
• Consider some really huge graphs…

– All cities and towns in the World Atlas
– All stars in the Galaxy
– All ways 10 blocks can be stacked

Huh???

Implicitly Generated Graphs
• A huge graph may be implicitly specified by

rules for generating it on-the-fly
• Blocks world:

– vertex = relative positions of all blocks
– edge = robot arm could stack block a on block b

stack(blue,red)

stack(green,red)

stack(green,blue)

7

Blocks World

source: initial state of the blocks
goal: desired state of the blocks
path from source to goal = sequence of

actions (program) for robot arm

• n blocks � nn states
• 10 blocks � 10 billion states

Problem: Branching Factor

• Dijkstra’s algorithm is basically breadth-first
search (modulo arc weights)
– Visits all nodes (exhaustive search)

• Suppose we know that goal is only d steps
away.

• If out-degree of each node is 10, potentially
visits 10d vertices
– 10 step plan => 10 billion vertices!

Cannot search such huge graphs exhaustively!

8

An Easier Case

• Suppose you live in Manhattan; what do you
do?

52nd St

51st St

50th St

10
th

A
ve

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

3
rd

A
ve

2
nd

A
ve

S

G

Best-First Search

The Manhattan distance (
�

x+
�

y) is an
estimate of the distance to the goal
– a heuristic value

• heuristic: involving or serving as an aid to learning,
discovery, or problem-solving by experimental and
especially trial-and-error methods (Merriam Webster – www.m-w.com)

Best-First Search
– Order nodes in priority to minimize estimated

distance to the goal

Compare: Dijkstra
– Order nodes in priority to minimize distance from

the start

9

Best First in Action

• Suppose you live in Manhattan; what do you
do?

52nd St

51st St

50th St

10
th

A
ve

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

3
rd

A
ve

2
nd

A
ve

S

G

• Will get back on track, but
not quick enough

Being Mislead

52nd St

51st St

50th St

10
th

A
ve

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

3
rd

A
ve

2
nd

A
ve

S G

Best First – mistaken path
Best First – correct path
Dijkstra

10

Optimality

• Does Best-First Search find the shortest
path
– when the goal is first seen?

– when the goal is removed from priority
queue?

Sub-Optimal Solution
• Goal is by definition at distance 0: will be

removed from priority queue immediately,
even if a shorter path exists!

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

11

Synergy?

Dijkstra / Breadth First guaranteed to find
optimal solution

Best First often visits far fewer vertices,
but may not provide optimal solution

– Can we get the best of both?

A*

A* - Order vertices in priority queue to minimize
(distance from start) + (estimated distance to
goal)

f(n) = g(n) + h(n)

f(n) = priority of a node
g(n) = true distance from start
h(n) = heuristic distance to goal

12

Optimality

• Suppose the estimated distance (h) is �
the true distance to the goal
– (heuristic is a lower bound)

• Then: when the goal is removed from
the priority queue, we are guaranteed to
have found a shortest path!

Optimality Revisited

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks) 5+2=6

1+4=5

Dijkstra
would
have

visited
these
guys!

50th St

13

Revised Cloud Proof
• Suppose have found a path of cost c to G which is not

optimal
– priority(G) = f(G) = g(G) + h(G) = c + 0 = c

• Say N is the last vertex on an optimal path P to G which
has been added to the queue but not yet dequeued.
– There must be such an N, otherwise the optimal path would

have been found.
– priority(N) = f(N) = g(N) + h(N) � g(N) + actual cost N to G

= cost of path P < c

• So N will be dequeued before G is dequeued
• Repeat argument to show entire optimal path will be

expanded before G is dequeued.

S
N

G
c

A Little History

• A* invented by Nils Nilsson & colleagues in
1968
– or maybe some guy in Operations Research?

• Cornerstone of artificial intelligence
– still a hot research topic!
– iterative deepening A*, automatically generating

heuristic functions, …

• Method of choice for search large (even
infinite) graphs when a good heuristic
function can be found

14

What About Those Blocks?

• “Distance to goal” is not always physical
distance

• Blocks world:
– distance = number of stacks to perform
– heuristic lower bound = number of blocks out of place

out of place = 2, true distance to goal = 3

Other Examples

• Simplifying Integrals
– vertex = formula
– goal = closed form formula without integrals
– arcs = mathematical transformations

– heuristic = number of integrals remaining in
formula

1

1

n
n x

x dx
n

�

�

�

15

DNA Sequencing

• Problem: given chopped up DNA, reassemble

• Vertex = set of pieces

• Arc = stick two pieces together

• Goal = only one piece left

• Heuristic = number of pieces remaining - 1

Solving Simultaneous Equations

• Input: set of equations

• Vertex = assignment of values to some of the
variables

• Edge = Assign a value to one more variable

• Goal = Assignment that simultaneously
satisfies all the equations

• Heuristic = Number of equations not yet
satisfied

16

What ISN’T A*?

essentially, nothing.

Greedy Summary

• Greedy algorithms are not always optimal
– Some greedy algorithms give provably optimal

solutions (Dijkstra)
– Others do not

• Notion of minimizing some function
– Dijkstra – minimizes distance from start
– Best First – minimizes distance to finish
– Kruskal – minimizes edge costs
– Hill Climbing – minimizes distance to the sky

17

Dynamic Programming (Memoizing)

• Define problem in terms of smaller
subproblems

• Solve and record solution for base cases
• Build solutions for subproblems up from

solutions to smaller subproblems

Can improve runtime of divide & conquer
algorithms that have shared subproblems
with optimal substructure.

Usually involves a table of subproblem
solutions.

Dynamic Programming in Action

• Sequence Alignment
• Optimal Binary Search Tree
• All pairs shortest path
• Many, many optimization problems

– Databases: finding the optimal way to answer a
query

– Workflow: the optimal order of operations to
construct some complex object

• Fibonacci numbers

18

Fibonacci Numbers
F(n) = F(n - 1) + F(n - 2)
F(0) = 1

F(1) = 1

i nt f i b(i nt n) {

i f (n <= 1)

r et ur n 1;

el se

r et ur n f i b(n - 1) +

f i b(n - 2) ;

}

runtime:

Fibonacci Numbers
Observation: every Fibonacci number

depends on the previous two
i nt f i b(i nt n) {

st at i c vect or <i nt > f i bs;

i f (n <= 1)

r et ur n 1;

i f (f i bs[n] == 0)

f i bs[n] = f i b(n - 1) +

f i b(n - 2) ;

r et ur n f i bs[n] ;

}

recurrence:

runtime:

19

To Do

• Project IV
– Write an algorithm over your Graph Data

Structure!

• Finish reading Chapter 10
• Come to the movie Friday

Coming Up

• Other Data Structures

• No Quiz tomorrow

• Movie!! (& pizza)

