CSE 326: Data Structures Lecture #18 Exploring Graphs

Bart Niswonger Summer Quarter 2001

Doday's Outline Stuff Bart didn't finish Friday Graph Algorithms Shortest Path Djikstra Minimum Spanning Tree Kruskal Prim

Single Source, Shortest Path

Given a graph G = (V, E) and a vertex s ∈ v, find the shortest path from s to every vertex in v

Many variations:

- weighted vs. unweighted
- cyclic vs. acyclic
- positive weights only vs. negative weights allowed
- multiple weight types to optimize

Single Source & Goal

Suppose we only care about shortest path from source s to a particular vertex g

- Run Dijkstra to completion
- Stop early? When?
 - When g is added to the priority queue
 - When g is removed from the priority queue
 - When the priority queue is empty

Applications of MSTs

- Communication networks
- VLSI design
- Transportation systems
- Good approximation to some NP-hard problems

Initialize all vertices to unconnected While there are still unmarked edges Pick a lowest cost edge e = (u, v) and mark it If u and v are not already connected, add e to the minimum spanning tree and connect u and v

