
1

CSE 326: Data Structures
Lecture #18

Exploring Graphs

Bart Niswonger
Summer Quarter 2001

Today’s Outline

• Stuff Bart didn’t finish Friday
• Graph Algorithms

– Shortest Path
• Djikstra

– Minimum Spanning Tree
• Kruskal
• Prim

2

Single Source, Shortest Path

Given a graph G = (V, E) and a vertex s �� ��

V, find the shortest path from s to every vertex
in V

Many variations:
– weighted vs. unweighted
– cyclic vs. acyclic
– positive weights only vs. negative weights allowed
– multiple weight types to optimize

Dijkstra’s Algorithm for Single Source Shortest Path

• Classic algorithm for solving shortest path in
weighted graphs without negative weights

• A greedy algorithm (irrevocably makes decisions
without considering future consequences)

• Intuition:
– shortest path from source vertex to itself is 0
– cost of going to adjacent nodes is at most edge

weights
– cheapest of these must be shortest path to that node
– update paths for new node and continue picking

cheapest path

3

Dijkstra’s Pseudocode
(actually, our pseudocode for Dijkstra’s algorithm)

Mark every node as unknown
Initialize the cost of each node to �
Initialize the cost of the source to 0
While there are unknown nodes left in the graph

Select the unknown node n with the lowest cost
Mark n as known
For each node a which is adjacent to n

a’s cost = min(a’s old cost,
n’s cost + cost of (n, a))

Dijkstra’s Algorithm in Action

A

C

B

D

F H

G

E

2 2 3

2
1

1

4
10

8

1
1

9
4

2

7

�
�
�
�
�
�
�
�

	�

������
�� ������������

4

THE KNOWN
CLOUD

G
Next shortest path from
inside the known cloud

P

Better path
to the same node

The Cloud Proof

But, if the path to G is the next shortest path,
the path to P must be at least as long.

So, how can the path through P to G be shorter?

Source

Inside the Cloud (Proof)

Everything inside the cloud has the correct shortest
path

Proof is by induction on the # of nodes in the cloud:
– initial cloud is just the source with shortest path 0
– inductive step: once we prove the shortest path to G is

correct, we add it to the cloud

Negative weights blow this proof away!

5

Data Structures (for Dijkstra’s Algorithm)

Select the unknown node with the lowest cost

findMin/deleteMin

a’s cost = min(a’s old cost, …)

decreaseKey

find by name

|V| times:

|E| times:

runtime:

Revenge of Dijkstra Pseudocode

Initialize the cost of each node to �

s.cost = 0;
heap.insert(s);
while (! heap.empty())

n = heap.deleteMin()
for (each node a which is adjacent to n)

if (n.cost + edge[n,a].cost < a.cost) then
a.cost = n.cost + edge[n,a].cost
a.path = n;
if (heap.contains(a)) then heap.decreaseKey(a)
else heap.insert(a)

6

Single Source & Goal

Suppose we only care about shortest path
from source s to a particular vertex g
– Run Dijkstra to completion

– Stop early? When?
• When g is added to the priority queue
• When g is removed from the priority queue
• When the priority queue is empty

Spanning tree: a subset of the edges from a
connected graph that…
…touches all vertices in the graph (spans the graph)
…forms a tree (is connected and contains no cycles)

Minimum spanning tree (MST): the spanning
tree with the least total edge cost.

Spanning Trees

4 7

1 5

9

2

7

Applications of MSTs

• Communication networks

• VLSI design

• Transportation systems

• Good approximation to some NP-hard
problems

Kruskal’s Algorithm for MSTs

A greedy algorithm:

Initialize all vertices to unconnected

While there are still unmarked edges
Pick a lowest cost edge e = (u, v) and mark it
If u and v are not already connected, add e to the

minimum spanning tree and connect u and v

8

Kruskal’s Algorithm in Action (1/5)

A

C

B

D

F H

G

E

2 3

1

4

10

8

�

94

2

7

2

2

Kruskal’s Algorithm in Action (2/5)

A

C

B

D

F H

G

E

� �

�

4

10

8

�

94

�

7

�

�

9

Kruskal’s Algorithm in Action (3/5)

A

C

B

D

F H

G

E

�
3

�

4

10

8

�

9
�

�

7

�

�

Kruskal’s Algorithm in Action (4/5)

A

C

B

D

F H

G

E

�
3

�

�

10

8

�

94

�

7

�

�

10

Kruskal’s Algorithm Completed (5/5)

A

C

B

D

F H

G

E

� �
3

�
�

�

10

8

�

94

�

7

Why Greediness Works
The algorithm produces a spanning tree. Why?

Proof by contradiction: Kruskal’s finds the minimum:
Assume another spanning tree has lower cost than

Kruskal’s
Pick an edge e1 = (u,v) in that tree that’s not in Kruskal’s
Kruskal’s connects u’s and v’s sets with another edge e2

But e2 must have at most the same cost as e1!
So, swap e2 for e1 (at worst keeping the cost the same)
Repeat until the tree is identical to Kruskal’s:

contradiction!

QED: Kruskal’s algorithm finds a MST

11

Data Structures (for Kruskal’s Algorithm)

Pick the lowest cost edge… findMin/deleteMin

If u and v are not already connected…
…connect u and v.

union

|E| times:

|E| times:

runtime:

Once:
Initialize heap of edges… buildHeap

|E| + |E| log |E| + |E| ack(|E|,|V|)

Prim’s Algorithm

• Can also find Minimum Spanning Trees
using a variation of Dijkstra’s algorithm:

Pick a initial node
Until graph is connected:

Choose edge (u,v) which is of minimum cost
among edges where u is in tree but v is not
Add (u,v) to the tree

• Same “greedy” proof, same asymptotic
complexity

12

Does Greedy Always Work?

• Consider the following problem:
– Given a graph G = (V,E) and a designed

subset of vertices S, find a minimum cost
tree that includes all of S

• Exactly the same as a minimum
spanning tree, except that it doesn’t
have to include ALL the vertices – only
the specified subset of vertices.
– Does Kruskal or Prim work?

Nope!

• Greedy can fail to be optimal
– because different solutions may contain different

“non-designed” vertices, proof that you can covert
one to the other doesn’t go through

• This Minimum Steiner Tree problem has no
known solution of O(nk) for any fixed k

– This is a NP-complete problem
– Finding a spanning tree and then pruning it a

pretty good approximation

