CSE 326: Data Structures Lecture \#18 Exploring Graphs

Bart Niswonger

Summer Quarter 2001

Today's Outline

- Stuff Bart didn’t finish Friday
- Graph Algorithms
- Shortest Path
- Djikstra
- Minimum Spanning Tree
- Kruskal
- Prim

Single Source, Shortest Path

Given a graph $\mathbf{G}=(\mathbf{v}, \mathbf{E})$ and a vertex $\mathbf{s} \in$ v , find the shortest path from s to every vertex in \mathbf{v}

Many variations:

- weighted vs. unweighted
- cyclic vs. acyclic
- positive weights only vs. negative weights allowed
- multiple weight types to optimize

- Classic algorithm for solving shortest path in weighted graphs without negative weights
- A greedy algorithm (irrevocably makes decisions without considering future consequences)
- Intuition:
- shortest path from source vertex to itself is 0
- cost of going to adjacent nodes is at most edge weights
- cheapest of these must be shortest path to that node
- update paths for new node and continue picking cheapest path

Dijkstra's Pseudocode

(actually, our pseudocode for Dijkstra's algorithm)

Mark every node as unknown
Initialize the cost of each node to ∞
Initialize the cost of the source to 0
While there are unknown nodes left in the graph
Select the unknown node n with the lowest cost
Mark n as known
For each node a which is adjacent to n a's cost $=\min ($ a's old cost,
n 's cost $+\operatorname{cost}$ of $(n, a))$

Dijkstra's Algorithm in Action

The Cloud Proof

But, if the path to \mathbf{G} is the next shortest path, the path to \mathbf{P} must be at least as long.
So, how can the path through \mathbf{P} to \mathbf{G} be shorter?

Inside the Cloud (Proof)

Everything inside the cloud has the correct shortest path

Proof is by induction on the \# of nodes in the cloud:

- initial cloud is just the source with shortest path 0
- inductive step: once we prove the shortest path to G is correct, we add it to the cloud

Data Structures (for Dijkstra's Algorithm)

|V| times:
Select the unknown node with the lowest cost
findMin/deleteMin
|E| times:
a's cost $=\min (a$'s old cost, \ldots.

runtime:

Revenge of Dijkstra Pseudocode

Initialize the cost of each node to ∞
s.cost = 0;
heap.insert(s);
while (! heap.empty())
n = heap.deleteMin()
for (each node a which is adjacent to n)
if (n.cost + edge[n,a].cost < a.cost) then
a.cost $=$ n.cost + edge[n,a].cost
a.path = n;
if (heap.contains(a)) then heap.decreaseKey(a)
else heap.insert(a)

Single Source \& Goal

Suppose we only care about shortest path from source s to a particular vertex g

- Run Dijkstra to completion
- Stop early? When?
- When g is added to the priority queue
- When g is removed from the priority queue
- When the priority queue is empty

Spanning Trees

Spanning tree: a subset of the edges from a connected graph that...
...touches all vertices in the graph (spans the graph)
...forms a tree (is connected and contains no cycles)

Minimum spanning tree (MST): the spanning tree with the least total edge cost.

Applications of MSTs

- Communication networks
- VLSI design
- Transportation systems
- Good approximation to some NP-hard problems

Kruskal's Algorithm for MSTs

A greedy algorithm:

Initialize all vertices to unconnected
While there are still unmarked edges
Pick a lowest cost edge $\mathbf{e}=(\mathbf{u}, \mathrm{v})$ and mark it If u and v are not already connected, add e to the minimum spanning tree and connect \mathbf{u} and \mathbf{v}

Kruskal's Algorithm in Action (1/5)

Kruskal's Algorithm in Action (215)

Kruskal's Algorithm in Action (3/5)

Kruskal's Algorithm in Action (4/5)

Kruskal's Algorithm Completed (5/5)

Why Greediness Works

The algorithm produces a spanning tree. Why?
Proof by contradiction: Kruskal's finds the minimum:
Assume another spanning tree has lower cost than

Kruskal's

Pick an edge $e_{1}=(u, v)$ in that tree that's not in Kruskal's
Kruskal's connects u's and v's sets with another edge e_{2}
But e_{2} must have at most the same cost as e_{1} !
So, swap e_{2} for e_{1} (at worst keeping the cost the same)
Repeat until the tree is identical to Kruskal's: contradiction!

QED: Kruskal's algorithm finds a MST

Data Structures (for Kruskal's Algorithm)

Once:

Initialize heap of edges...
\rightarrow buildHeap
|E| times:
Pick the lowest cost edge... $\mathrm{findMin} /$ deleteMin $^{\text {con }}$
|E| times:
If \mathbf{u} and \mathbf{v} are not already connected...
...connect \mathbf{u} and \mathbf{v}.
$|E|+|E| \log |E|+|E| \operatorname{ack}(|E|,|V|)$
runtime:

Prim's Algorithm

- Can also find Minimum Spanning Trees using a variation of Dijkstra's algorithm:
Pick a initial node
Until graph is connected:
Choose edge (u, v) which is of minimum cost among edges where u is in tree but v is not Add (u, v) to the tree
- Same "greedy" proof, same asymptotic complexity

Does Greedy Always Work?

- Consider the following problem:
- Given a graph $G=(V, E)$ and a designed subset of vertices S, find a minimum cost tree that includes all of S
- Exactly the same as a minimum spanning tree, except that it doesn't have to include ALL the vertices - only the specified subset of vertices.
- Does Kruskal or Prim work?

Nope!

- Greedy can fail to be optimal
- because different solutions may contain different "non-designed" vertices, proof that you can covert one to the other doesn't go through
- This Minimum Steiner Tree problem has no known solution of $\mathrm{O}\left(\mathrm{n}^{k}\right)$ for any fixed k
- This is a $N P$-complete problem
- Finding a spanning tree and then pruning it a pretty good approximation

