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CSE 326: Data Structures
Lecture #17

Trees and DAGs and Graphs, 
Oh MY!

Bart Niswonger
Summer Quarter 2001

Today’s Outline

• Project IV
• Stuff Bart didn’t get to Monday
• Graphs (what are they?)
• Topological Sort
• Graph Data Structures
• Graph Properties
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Graph… ADT?

a graph G is represented as G = ( V,  E)

– V is a set of vertices: { v 1,  v 2,  …,  v n}

– E is a set of edges: { e1,  e2,  …,  em}
where each e i connects two
vertices ( v i 1,  v i 2)

operations include:
– iterating over vertices
– iterating over edges
– iterating over vertices adjacent to a specific 

vertex
– asking whether an edge exists connected 

two vertices

Han

Leia

Luke

V = { Han,  Lei a,  Luke}
E = { ( Luke,  Lei a) ,  

( Han,  Lei a) ,  
( Lei a,  Han) }

Graphs - a formalism for representing relationships

How Many Edges?

A

DC

E

B
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Graph Applications

• Storing things that are graphs by nature
– distance between cities
– airline flights, travel options
– relationships between people, things
– distances between rooms in Clue

• Compilers
– callgraph - which functions call which others
– dependence graphs - which variables are defined 

and used at which statements

Total Order

1

2

3

4

5

6

7A B means A must go before B
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Partial Order: Planning a Trip

check in
airport

call
taxi

taxi to
airport

reserve
flight

pack
bagstake

flight

locate
gate

Topological Sort

Given a graph, G = ( V,  E) , output all the 
vertices in V such that no vertex is output 
before any other vertex with an edge to it.

check in
airport

call
taxi

taxi to
airport

reserve
flight

pack
bags

take
flight

locate
gate
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Topo-Sort Take One

Label each vertex’s in-degree (# of inbound edges)

While there are vertices remaining
1. Pick a vertex with in-degree of zero and 

output it

2. Reduce the in-degree of all vertices 
adjacent to it

3. Remove it from the list of vertices

runtime:

Topo-Sort Take Two

Label each vertex’s in-degree

Initialize a queue to contain all in-degree zero 
vertices

While there are vertices remaining in the queue
1.Pick a vertex v with in-degree of zero and output it
2.Reduce the in-degree of all vertices adjacent to v
3.Put any of these with new in-degree zero in the queue
4.Remove v from the queue

runtime:
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Graph Representations
• List of vertices + list of edges

• 2-D matrix of vertices (marking edges in the 
cells)

“adjacency matrix”

• List of vertices each with a list of adjacent 
vertices

“adjacency list”

Han

Leia

Luke

Adjacency Matrix

A | V|  x | V|  array in which an element 
( u,  v)  is true if and only if there is an 
edge from u to v
Han

Leia

Luke

Han Luke Leia

Han

Luke

Leia

runtime: space requirements:
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Adjacency List

A | V| -ary list (array) in which each entry 
stores a list (linked list) of all adjacent 
vertices
Han

Leia

Luke
Han

Luke

Leia

runtime: space requirements:

• In directed graphs, edges have a specific direction:

• In undirected graphs, they don’t (edges are two-way):

• Vertices u and v are adjacent if ( u,  v )  �� �� E

Directed vs. Undirected Graphs

Han

Leia

Luke

Han

Leia

Luke

aka: di-graphs
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Weighted Graphs

20

30

35

60

Mukilteo

Edmonds

Seattle

Bremerton

Bainbridge

Kingston

Clinton

There may be more 
information in the graph as well.

Each edge has an associated weight or cost.

Paths
A path is a list of vertices { v1,  v2,  …,  vn}

such that ( v i ,  v i +1)  �� �� E for all 0 
�� ��

i  < n.

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

p = {Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle}
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Path Length and Cost
Path length: the number of edges in the path
Path cost: the sum of the costs of each edge

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

3.5

2 2

2.5

3

2
2.5

2.5

length(p) = 5 cost(p) = 11.5

Simple Paths and Cycles
A simple path repeats no vertices (except that the first can 

be the last):
– p = {Salt Lake City, San Francisco, Dallas}
– p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}

A cycle is a path that starts and ends at the same 
node:
– p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}

A simple cycle is a cycle that repeats no vertices 
except that the first vertex is also the last (in 
undirected graphs, no edge can be repeated)



10

Connectivity
Undirected graphs are connected if there is a 

path between any two vertices

Directed graphs are strongly connected if there 
is a path from any one vertex to any other

Di-graphs are weakly connected if there is a 
path between any two vertices, ignoring 
direction

A complete graph has an edge between every 
pair of vertices

Graph Density

A sparse graph has O(|V|) edges

A dense graph has 
�

(|V|2) edges

Anything in between is either sparsish or densy
depending on the context.
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Trees as Graphs

• Every tree is a graph 
with some restrictions:
– the tree is directed

– there are no cycles
(directed or undirected)

– there is a directed path 
from the root to every 
node

A

B

D E

C

F

HG

JI

Directed Acyclic Graphs (DAGs)

DAGs are directed 
graphs with no 
cycles.

mai n( )

add( )

access( )

mul t ( )

r ead( )

Trees � DAGs � Graphs
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To Do

• Finish Project III (due Today!)
• Read chapter 9 (see Calendar)
• Read Project IV writeup

Coming Up

• Graph Algorithms!
• Quiz (tomorrow)
• Project IV code


