
1

CSE 326: Data Structures
Lecture #16

Sorting Things Out

Bart Niswonger
Summer Quarter 2001

Unix Tutorial!!

• Tuesday, July 31st

– 10:50am, Sieg 322

Printing worksheet
Shell

different shell quotes : ' `

scripting, #!

alias

variables / environment

redirection, piping

Useful tools
grep, egrep/grep -e
sort
cut
file
tr
find, xargs
diff, patch
which, locate, whereis

Finding info
Techniques
Resources (ACM webpage, web,

internal docs)

Process management
File management/permissions
Filesystem layout

2

Today’s Outline

• Project
– Rules of competition

• Sorting by comparison
– Simple :

• Sel ect i onSor t ; Bubbl eSor t ; I nser t i onSor t

– Quick :
• Qui ckSor t

– Good Worst Case :
• Mer geSor t ; HeapSor t

Sorting: The Problem Space

General problem
Given a set of N orderable items, put them in
order

Without (significant) loss of generality, assume:
– Items are integers
– Ordering is �

Most sorting problems map to the above in linear time.

3

Selection Sort

1. Find the smallest element, put it first
2. Find the next smallest element, put it

second
3. Find the next smallest, put it next
… etc.

Selection Sort
pr ocedur e Sel ect i onSor t (Ar r ay[1. . N]

For i =1 t o N- 1
Fi nd t he smal l est ent r y i n Ar r ay[i . . N]
Let j be t he i ndex of t hat ent r y
Swap(Ar r ay[i] , Ar r ay[j])

End For

Whi l e ot her peopl e ar e codi ng Qui ckSor t / Mer geSor t
Twi ddl e t humbs

End Whi l e

4

HeapSort

• Use a Priority Queue (Heap)

756

27

18
801

35

13

23 44
87

8 13 18 23 27

Shove everything into a queue, take them out
smallest to largest.

QuickSort

28

15 47�� �� �� ��

�� �� �� ��

�� �� �� ��

1. Basic idea: Pick a pivot.
2. Partition into less-than & greater-than pivot.
3. Sort each side recursively.

5

2 goes to
less-than

QuickSort Partition
6953827Pick pivot

Partition with
cursors

6953827
< >

6953827
< >

8953627
< >

6, 8 swap
less/greater-than

89536273,5 less-than
9 greater-than

8953627
Partition done.
Recursively
sort each side.

Analyzing QuickSort

• Picking pivot: constant time
• Partitioning: linear time
• Recursion: time for sorting left partition

(say of size i) + time for right (size N-i-1)
T(1) = b

T(N) = T(i) + T(N-i-1) + cN

where i is the number of elements smaller than the pivot

6

QuickSort : Worst Case

• What is the worst case?

Optimizing QuickSort

• Choosing the Pivot
– Randomly choose pivot

• Good theoretically and practically, but call to random number
generator can be expensive

– Pick pivot cleverly
• “Median-of-3” rule takes element at Median(first value, last

value). Works well in practice.

• Cutoff
– Use simpler sorting technique below a certain problem

size
• Weiss suggests using insertion sort, with a cutoff limit of 5-20

7

QuickSort : Best Case

T(N) = T(i) + T(N-i-1) + cN

T(N) = 2T(N/2 - 1) + cN

< 2T(N/2) + cN

< 4T(N/4) + c(2(N / 2) + N)

< 8T(N/8) + cN(1 + 1 + 1)

< kT(N/k) + cN log k = O(N log N)

QuickSort : Average Case

• Assume all size partitions equally likely,
with probability 1/N

� �

0

1

0

1
average value of T(i) or T(N-i-1)

()

is (1/)

(log)

() (1)

() (2) ()

(

/

)
N

j

N

j

T N T i T N i cN

T N N T j

N

j

N

N

O

cN

T

�

�

�

�

� � � � �

� �

�

�

�

details: Weiss pg 278-279

8

Merging Cars by key
[Aggressiveness of driver].
Most aggressive goes first.

MergeSort (Collection [1..n])
1. Split Collection in half
2. Recursively sort each half
3. merge two sorted halves together

merge (C1[1..n], C2[1..n])
i1=1, i2=1
while i1<n and i2<n

if C1[i1] < C2[i2]
Next is C1[i1]
i1++

else
Next is C2[i2]
i2++

end If
end while

MergeSort

MergeSort Analysis

• Running Time
– Worst case?

– Best case?

– Average case?

• Other considerations besides running
time?

9

Is This The Best We Can Do?

• Sorting by Comparison
– Only information available to us is the set

of N items to be sorted

– Only operation available to us is pairwise
comparison between 2 items

What is the best running time we can possibly
achieve?

Decision Tree Analysis

�����

���	�	
�� Internal node, with
facts known so far

Leaf node, with
ordering of A,B,C

����
Edge, with result
of one comparison

�����

�����
� ���

�����
� ���

��� ���� �

� � � � ��� � � � � ������ �

10

How deep is Decision Tree?

• How many permutations are there of N
numbers?

• How many leaves does the tree have?

• What’s the shallowest tree with a given
number of leaves?

• What is therefore the worst running time
(number of comparisons) by the best possible
sorting algorithm?

Lower Bound for log(n!)
n

e

n
nn 	

�
�

�
� �2!

log(!) log 2

log(2) lo (log)g

n

n

n
n n

e

n
n n n

e

�

�

� �� �
� � 	� 	� 	

� �� �
� � �� 	� 	� 	

�

Stirling’s approximation:

11

Is This The Best We Can Do?

• Sorting by Comparison
– Only information available to us is the set

of N items to be sorted

– Only operation available to us is pairwise
comparison between 2 items

What happens if we relax these constraints?

BinSort (a.k.a. BucketSort)

Requires:
– Knowing the keys to be in {1, …, K}

– Having an array of size K

Works by:
Putting items into correct bin (cell) of array,

based on key

12

BinSort example

K=5 list=(5,1,3,4,3,2,1,1,5,4,5)

5,5,5key = 5

4,4key = 4

3,3key = 3

2key = 2

1,1,1key = 1

Bins in array

Sorted list:
1,1,1,2,3,3,4,4,5,5,5

BinSort Pseudocode
pr ocedur e Bi nSor t (Li st L, K)

Li nkedLi st bi ns[1. . K]
/ / Each el ement of ar r ay bi ns i s l i nked l i st .
/ / Coul d al so Bi nSor t wi t h ar r ay of ar r ays.

For Each number x i n L
bi ns[x] . Append(x)

End For
For i = 1. . K

For Each number x i n bi ns[i]
Pr i nt x

End For
End For

13

BinSort Running Time

• K is a constant
– BinSort is linear time

• K is variable
– Not simply linear time

• K is large (e.g. 232)
– Impractical

BinSort is “stable”

Definition: Stable Sorting Algorithm
Items in input with the same key end up in

the same order as when they began.

• BinSort is stable
– Important if keys have associated values

– Critical for RadixSort

14

Mr. Radix

Herman Hollerith invented and developed a punch-card tabulation machine system that revolutionized statistical
computation.
Born in Buffalo, New York, the son of German immigrants, Hollerith enrolled in the City College of New York at age
15 and graduated from the Columbia School of Mines with distinction at the age of 19.
His first job was with the U.S. Census effort of 1880. Hollerith successively taught mechanical engineering at the
Massachusetts Institute of Technology and worked for the U.S. Patent Office. Hollerith began working on the
tabulating system during his days at MIT, filing for the first patent in 1884. He developed a hand-fed 'press' that
sensed the holes in punched cards; a wire would pass through the holes into a cup of mercury beneath the card
closing the electrical circuit. This process triggered mechanical counters and sorter bins and tabulated the
appropriate data.
Hollerith's system-including punch, tabulator, and sorter-allowed the official 1890 population count to be tallied in six
months, and in another two years all the census data was completed and defined; the cost was $5 million below the
forecasts and saved more than two years' time. His later machines mechanized the card-feeding process, added
numbers, and sorted cards, in addition to merely counting data.
In 1896 Hollerith founded the Tabulating Machine Company, forerunner of Computer Tabulating Recording
Company (CTR). He served as a consulting engineer with CTR until retiring in 1921.
In 1924 CTR changed its name to IBM- the International Business Machines Corporation.

Herman Hollerith
Born February 29, 1860 - Died November 17, 1929

Art of Compiling Statistics; Apparatus for Compiling Statistics

Source: National Institute of Standards and Technology (NIST) Virtual Museum - http://museum.nist.gov/panels/conveyor/hollerithbio.htm

RadixSort

• Radix = “The base of a number system”
(Webster’s dictionary)
– alternate terminology: radix is number of bits needed

to represent 0 to base-1; can say “base 8” or “radix 3”

• Idea: BinSort on each digit, bottom up.

15

RadixSort – magic! It works.

• Input list:
126, 328, 636, 341, 416, 131, 328

• BinSort on lower digit:
341, 131, 126, 636, 416, 328, 328

• BinSort result on next-higher digit:
416, 126, 328, 328, 131, 636, 341

• BinSort that result on highest digit:
126, 131, 328, 328, 341, 416, 636

Not magic. It provably works.

• Keys
– K-digit numbers

– base B

• Claim: after ith BinSort, least significant i
digits are sorted.
– e.g. B=10, i=3, keys are 1776 and 8234.

8234 comes before 1776 for last 3 digits.

16

RadixSort
Proof by Induction

• Base case:
– i=0. 0 digits are sorted (that wasn’t hard!)

• Induction step
– assume for i, prove for i+1.
– consider two numbers: X, Y. Say Xi is ith digit of X

(from the right)
• Xi+1 < Yi+1 then i+1th BinSort will put them in order
• Xi+1 > Yi+1 , same thing
• Xi+1 = Yi+1 , order depends on last i digits. Induction

hypothesis says already sorted for these digits. (Careful
about ensuring that your BinSort preserves order aka
“stable”…)

What types can you RadixSort?

• Any type T that can be BinSorted
• Any type T that can be broken into parts

A and B, such that:
– You can reconstruct T from A and B
– A can be RadixSorted
– B can be RadixSorted
– A is always more significant than B, in

ordering

17

Example:

• 1-digit numbers can be BinSorted
• 2 to 5-digit numbers can be BinSorted

without using too much memory
• 6-digit numbers, broken up into A=first 3

digits, B=last 3 digits.
– A and B can reconstruct original 6-digits
– A and B each RadixSortable as above
– A more significant than B

RadixSorting Strings

• 1 Character can be BinSorted
• Break strings into characters
• Need to know length of biggest string (or

calculate this on the fly).
• Null-pad shorter strings
• Running time:

– N is number of strings
– L is length of longest string
– RadixSort takes O(N*L)

18

To Do

• Finish Project III (due Wednesday!)
• Finish reading chapter 7

Coming Up

• More Algorithms!
• Sorting
• Project III due (Wednesday)

• Unix Tutorial (Tuesday, tomorrow!)

