|I || CSE 326: Data Structures

Lecture #15

The Dynamic (Equivalence) Duo:
Weighted Union & Path
Compression

Bart Niswonger %
*Summer Quarter 2001

Today’s Outline

Project
— Rules of competition

Making a “good” maze
Disjoint Set Union/Find ADT
Up-trees

Weighted Unions

Path Compression

Unix Tutorial!!

» Tuesday, July 315t
—10:50am, Sieg 322

Printing worksheet
Shell

different shell quotes : ' *
scripting, #!

alias

variables / environment
redirection, piping

Useful tools
grep, egrep/grep -e
sort
cut
file
tr
find, xargs
diff, patch
which, locate, whereis
Finding info
Techniques
Resources (ACM webpage, web,
internal docs)
Process management
File management/permissions

Filesystem layout

What's a Good Maze?

The Maze Construction Problem

» Given:
— collection of rooms: V
— connections between rooms (initially all closed): E

e Construct a maze:
— collection of rooms: V' = V
— designated rooms in, i €V, and out, oeV

— collection of connections to knock down: E' ¢ E
such that one unique path connects every two
rooms

The Middle of the Maze

» So far, a number of walls
have been knocked down ‘
while others remain.

* Now, we consider the wall A
between A and B.
» Should we knock it down? B
— if A and B are otherwise
connected

— if A and B are not otherwise
connected

Maze Construction Algorithm

While edges remain in E
® Remove arandom edge e = (u, v) fromE
® If u and v have not yet been connected

-addeto E
- mark u and v as connected

Mysterious note:
We’'ll see this algorithm again!

Equivalence Relations

An equivalence relation ® must have three properties
: for any x, xRx is true
: for any x and y, xRy implies yRx
- for any x, y, and z, xRy and yRz implies xRz

Connection between rooms is an equivalence relation

— any room is connected to itself

— if room a is connected to room b, then room b is
connected to room a

— if room a is connected to room b and room b is connected
to room c, then room a is connected to room ¢

Disjoint Set Union/Find ADT

» Union/Find operations

_ create find(4) —
— destroy g«
— union
— find

union(2,6) =

. every element
of a DS U/F structure belongs to exactly one set

. the set of an
element can change after execution of a union

DiSjOint Set Union/Find? (More Formally)

« GivenasetU={a,;, a,, ..., a,}

* Maintain a partition of U, a set of subsets of U
{S1,S,, ..., S} such that:

— each pair of subsets S;and S; are disjkoint: SNS =Y

— together, the subsets cover U: U = US

i=1

— each subset has a uniqgue name

creates a new subset which is the
union of a’s subset and b’s subset

returns a unique name for a’s subset

TAKA the dynamic equivalence problem

Example

Construct the maze on
—— <«- 10 -
the right @ @ @

Initial (the name of each @ {é} 7 »@
set is underlined): L
OO

{aHbHcHdHeHHaKhKi}
Order of edges in blue

Example, First Step
{aH{bHcHAHeNHaHhHi} (D) 10
Qe Q=

find(b) = b

2 1 6

find(e) = e f f
find(b) = find(e) so: @‘ 4)7 '@

add 1 to E' 11 9 8
@., " ,@ . ,@

union(b, e)
Order of edges in blue

{aH{b,eH{cHdHIHaKhHi}

Example, Continued
(@} eHeHAHHAHOHY (@) s +(®)- 10D

Order of edges in blue

Up-Tree Intuition

Finding the representative member of a set is
somewhat like the opposite of finding whether
a given key exists in a set.

So, instead of using trees with pointers from
each node to its children; let's use trees with
a pointer from each node to its parent.

Up-Tree Union-Find Data Structure

» Each subset is an up-

tree with its root as its

representative member é}
» All members of a given e

set are nodes in that

set’s up-tree

» Hash table maps input
data to the node
associated with that
data
Up-trees are not necessarily binary!

Just traverse to the root!

runtime:

Just hang one root from the other!

runtime:
CUEROSIRC
The Whole Example a1 @ -©--©
union(b,e) @‘ 12 ’@‘ 5 ’(b

000000000
ééé ofcXo¥e

OEROFEC,
The Whole Example @11 @ é (f)

nnnnnnn & o O

éa,ééwm
660 6668

3@ 10°©
The Whole Example @i (%} (é (f)

nnnnnnn G

é @5 Jelolole

- 30088

The Whole Example @11 %}4 20

10’@

6

11 9 8
find(d) = find(e) @ 12 ®~ 5 O

No union!

oRC 0000
&

While we're finding e,
could we do anything else?

The Whole Example (1) (%) 7D

=0 100

6

union(h,i)

O s 0

QOEOOO0| | & COO
Qo O

11

10’@

6

The Whole Example @11 (%) 7D

11 9 8

union(c,f) @ 12 »@4—»@

O OOO0 | QG OO
b0 0"Q00 o

find(e)
find(f)

=
ééé 00

0%

Could we do a
better job on this union? Q

The Whole Example (7/11) (%)
©-

The Whole Example (/11)

find(f)
find(i)

@
;
&

i

o
0]

0
5

o %}E»@H

o6

O

The Whole Example (9/11)

find(e) = find(h) and find(b) = find(c)
So, no unions for either of these.

a0
O

@@ 10"©
@«

11 9

@ 12 O

13

©
The Whole Example (10/11)<% @+—®
find(d) 11
find(g) @ 12 OO
union(c, g) é}
é o
(a) (M)
d} dNONONO
&) @ & O® O
o ®

find(g) = find(h)

The Whole Example (11/11)i

S0, no union.

And, we’re done!
o | @
o %
(@) (O O
oo @ @ ®

Ooh... scary!
Such a hard maze!

14

Nifty storage trick

A forest of up-trees
can easily be e é)
stored in an array.

Also, if the node
names are o o

integers or

characters, we

can use a very e

simple, perfect

hash. 0(a) 1(b) 2(c) 3(d) 4(e) 5(f) 6(q) 7(h) 8()

up-index; -1 | 0 |2 |0 |1 |2 |-1|-1]|7

Implementation

typedef IDint;

IDfind(Object x) { IDunion(ID x, IDy) {
assert (hTabl e. contai ns(x)); assert(up[x] == -1);
I D parent1 D = hTabl e[x] ; assert(up[y] == -1);
whi l e(up[parentI D] !'=-1) { up[y]l = x;

parent| D = up[xI D]; }

}
return parentl D,

}

runtime: O(depth) or ... runtime: O(1)

15

Improvement: Weighted Union

» Always makes the root of the larger tree the new
root

« Often cuts down on height of the new up-tree

KR 48

Could we do a
better job on this union?
Weighted Union Code
typedef IDint;
ID union(ID x, IDy) {
assert(up[x] == -1);
assert(up[y] == -1);

if (weight[x] > weight[y]) {

Up.[y] - % _ new runtime of union:
wei ght[x] += weight[y];
}
el se {
up[x] =y; _ _
wei ght[y] += wei ght[X]; new runtime of find:
}

}

16

Weighted Union Find Analysis

» Finds with weighted union are O(max up-tree
height)

» But, an up-tree of height h with weighted union
must have at least 2" nodes

Base case: h =0, tree has 2° = 1 node
Induction hypothesis: assume true for h < h’
A merge can only increase tree height by

one over the smaller tree. So, a tree of
. _ height h’-1 was merged with a larger tree to
¢ Uy 2max height — n and form the new tree. Each tree then has > 2h-1

max helght = Iog n nodes by the induction hypotheses for a

} total of at least 2" nodes. QED.
» So, find takes O(log n)

Improvement: Path Compression

» Points everything along the path of a find to the
root

» Reduces the height of the entire access path to 1

@@5&@5@5& offellcloe

While we're finding e,

could we do anything else?

17

Path Compression Example

find(e)

Path Compression Code

typedef IDint;
IDfind(Qbject x) {

assert (hTabl e. contai ns(x));
I D parent| D = hTabl e[X];
I D hold = parent| D

while(up[parentiD != -1) {
parent| D = up[parent|D];
}
IDrootlD = parent|D runtime:
while(up[hold] !'=-1) {

I D ol dParent | D = up[hol d];
up[hol d] = rootID;
hol d = ol dParent | D;

}

return rootl D

18

Digression:
Doping at the Silicon Downs

How fast does log n grow? logn=4forn=16
Let log® n = log (log (log ... (log n)))
kI\o/gs
Then, let log* n = minimum k such that log® n< 1
How fast does log” n grow? log" n =4 for n = 65536

Ackermann created a really big function A(x, y) with
the inverse a(x, y) which is really small

How fast does a(X, y) grow? a(X, y) =4 for n far

larger than the number of atoms in the universe
(2300)

Complex Complexity of Weighted
Union + Path Compression

» Tarjan proved that m weighted union and find
operations on a set of n elements have worst
case complexity O(m-a(m, n))

« For all practical purposes this is amortized
constant time

* In some practical cases, one or both is
unnecessary because trees do not naturally
get very deep.

19

To Do

« Start Project Il (only 5 days!)
» Read chapter 8 in the book
 Start reading chapter 7

Coming Up

Algorithms
Sorting (Chapter 7)
Project Il due (next Wednesday)

Unix Tutorial (next Tuesday)

20

