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CSE 326: Data Structures

Lecture #15

The Dynamic (Equivalence) Duo:

Weighted Union & Path 

Compression
Bart Niswonger

Summer Quarter 2001
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Today’s Outline

• Project 
– Rules of competition

• Making a “good” maze
• Disjoint Set Union/Find ADT
• Up-trees
• Weighted Unions
• Path Compression
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Unix Tutorial!!

• Tuesday, July 31st

– 10:50am, Sieg 322

Printing worksheet
Shell 

different shell quotes : ' `

scripting, #!

alias

variables / environment

redirection, piping

Useful tools
grep, egrep/grep -e
sort
cut
file
tr
find, xargs
diff, patch
which, locate, whereis

Finding info
Techniques
Resources (ACM webpage, web, 

internal docs)

Process management
File management/permissions
Filesystem layout

What’s a Good Maze?
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The Maze Construction Problem

• Given: 
– collection of rooms: V
– connections between rooms (initially all closed): E

• Construct a maze:
– collection of rooms: V�� �� = V

– designated rooms in, i �� �� V, and out, o �� �� V

– collection of connections to knock down: E�� ����� �� E 
such that one unique path connects every two 
rooms

The Middle of the Maze

• So far, a number of walls 
have been knocked down 
while others remain.

• Now, we consider the wall 
between A and B.

• Should we knock it down?
– if A and B are otherwise 

connected
– if A and B are not otherwise 

connected

A

B
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Maze Construction Algorithm

While edges remain in E
� Remove a random edge e = ( u,  v ) from E

� If u and v have not yet been connected
- add e to E�� ��
- mark u and v as connected

Mysterious note:
We’ll see this algorithm again!

Equivalence Relations
An equivalence relation RRRR must have three properties

– reflexive: for any x, xRRRRx is true

– symmetric: for any x and y, xRRRRy implies yRRRRx

– transitive: for any x, y, and z, xRRRRy and yRRRRz implies xRRRRz

Connection between rooms is an equivalence relation
– any room is connected to itself
– if room a is connected to room b, then room b is 

connected to room a
– if room a is connected to room b and room b is connected 

to room c, then room a is connected to room c
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Disjoint Set Union/Find ADT
• Union/Find operations

– create
– destroy
– union
– find

• Disjoint set equivalence property: every element
of a DS U/F structure belongs to exactly one set

• Dynamic equivalence property: the set of an 
element can change after execution of a union

{ 1,4,8}

{ 7}

{ 6}

{ 5,9,10}
{ 2,3}

find(4)

8

union(2,6)

{ 2,3,6}

Disjoint Set Union/Find† (More Formally)

• Given a set U = {a1, a2, … , an}
• Maintain a partition of U, a set of subsets of U

{S1, S2, … , Sk} such that:

– each pair of subsets Si and Sj are disjoint: 

– together, the subsets cover U: 

– each subset has a unique name

• Union(a, b) creates a new subset which is the 
union of a’s subset and b’s subset

• Find(a) returns a unique name for a’s subset

†AKA the dynamic equivalence problem
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Example

Construct the maze on 
the right

Initial (the name of each 
set is underlined):

{a}{b}{c}{d}{e}{f}{g}{h}{i}

Order of edges in blue

a

d

b

e

c

f

g h i

3

2

4

11

10

1

7

9

6

8

12 5

Example, First Step
{a}{b}{c}{d}{e}{f}{g}{h}{i}

find(b) � b
find(e) � e
find(b) � find(e) so:

add 1 to E
�� ��

union(b, e)

{a}{b,e}{c}{d}{f}{g}{h}{i}

a

d

b

e

c

f

g h i

Order of edges in blue

3

2

4

11

10

1

7

9

6

8

12 5
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Example, Continued

{a}{b,e}{c}{d}{f}{g}{h}{i}

Order of edges in blue

a

d

b

e

c

f

g h i

3

2

4

11

10

7

9

6

8

12 5

Up-Tree Intuition

Finding the representative member of a set is 
somewhat like the opposite of finding whether 

a given key exists in a set.

So, instead of using trees with pointers from 
each node to its children; let’s use trees with 

a pointer from each node to its parent.
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Up-Tree Union-Find Data Structure

• Each subset is an up-
tree with its root as its 
representative member

• All members of a given 
set are nodes in that 
set’s up-tree

• Hash table maps input 
data to the node 
associated with that 
data

a c g h

d b

e

Up-trees are not necessarily binary!

f i

Find

a c g h

d b

e

f i

find(f)
find(e)

a

d

b

e

c

f

h i

11

10

7

9 8

12

Just traverse to the root!runtime:

g
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Union

a c g h

d b

e

f i

union(a,c)

a

d

b

e

c

f

g h i

11

10

9 8

12

Just hang one root from the other!runtime:

The Whole Example (1/11)

e

f g ha b c d i

union(b,e)

e f g ha b c d i

a

d

b

e

c

f

g h i

3

2

4

11

10

1

7

9

6

8

12 5
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union(a,d)

a

d

b

e

c

f

g h i

3

2

4

11

10

7

9

6

8

12 5

e

f g ha b c d i

f g ha b c i

d e

The Whole Example (2/11)

union(a,b)

a

d

b

e

c

f

g h i

3

4

11

10

7

9

6

8

12 5

f g ha b c i

d e

f g ha

b

c i

d

e

The Whole Example (3/11)
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find(d) = find(e)
No union!

a

d

b

e

c

f

g h i

4

11

10

7

9

6

8

12 5

f g ha

b

c i

d

e

While we’re finding e, 
could we do anything else?

The Whole Example (4/11)

union(h,i)

a

d

b

e

c

f

g h i

11

10

7

9

6

8

12 5

f g ha

b

c i

d

e

f g ha

b

c

id

e

The Whole Example (5/11)
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union(c,f)

a

d

b

e

c

f

g h i

11

10

7

9

6

8

12

f g ha

b

c

id

e

f

g ha

b

c

id

e

The Whole Example (6/11)

find(e)
find(f)
union(a,c)

a

d

b

e

c

f

g h i

11

10

7

9 8

12

f

g ha

b

c

id

e

f

g h

a

b

c

i

d

e
Could we do a 
better job on this union?

The Whole Example (7/11)
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a

d

b

e

c

f

g h i

11

10

9 8

12

f

g

ha

b

c

id

e

f

g h

a

b

c

i

d

e

find(f)
find(i)
union(c,h)

The Whole Example (8/11)

find(e) = find(h) and find(b) = find(c)
So, no unions for either of these.

a

d

b

e

c

f

g h i

11

10

9

12

f

g

ha

b

c

id

e

The Whole Example (9/11)
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find(d)
find(g)
union(c, g)

a

d

b

e

c

f

g h i

11

12

f

g

ha

b

c

id

e

f

g

ha

b

c

id

e

The Whole Example (10/11)

find(g) = find(h) 
So, no union.
And, we’re done!

a

d

b

e

c

f

g h i12

f

g

ha

b

c

id

e

a

d

b

e

c

f

g h i

Ooh… scary!
Such a hard maze!

The Whole Example (11/11)
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f

g ha

b

c

id

e

0 -1 0 1 2 -1 -1 7-1

0 (a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6 (g) 7 (h) 8 (i)

Nifty storage trick
A forest of up-trees 

can easily be 
stored in an array.

Also, if the node 
names are 
integers or 
characters, we 
can use a very 
simple, perfect 
hash.

up-index:

Implementation

I D f i nd( Obj ect  x)  {

asser t ( hTabl e. cont ai ns( x) ) ;

I D par ent I D = hTabl e[ x] ;

whi l e( up[ par ent I D]  ! = - 1)  {

par ent I D = up[ xI D] ;

}

r et ur n par ent I D;

}

I D uni on( I D x,  I D y)  {

asser t ( up[ x]  == - 1) ;

asser t ( up[ y]  == - 1) ;

up[ y]  = x;

}

t ypedef  I D i nt ;

runtime: O(depth) or … runtime: O(1)
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Improvement: Weighted Union

• Always makes the root of the larger tree the new 
root

• Often cuts down on height of the new up-tree

f

g ha

b

c

id

e

f

g h

a

b

c

i

d

eCould we do a 
better job on this union? Weighted union!

f

g ha

b c id

e

Weighted Union Code
I D uni on( I D x,  I D y)  {

asser t ( up[ x]  == - 1) ;

asser t ( up[ y]  == - 1) ;

i f  ( wei ght [ x]  > wei ght [ y] )  {

up[ y]  = x;

wei ght [ x]  += wei ght [ y] ;

}

el se {

up[ x]  = y;

wei ght [ y]  += wei ght [ x] ;

}

}

t ypedef  I D i nt ;

new runtime of union:

new runtime of find:
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Weighted Union Find Analysis

• Finds with weighted union are O(max up-tree 
height)

• But, an up-tree of height h with weighted union 
must have at least 2h nodes

• � , 2max height = n and
max height = log n

• So, find takes O(log n)

Base case: h = 0, tree has 20 = 1 node
Induction hypothesis: assume true for h < h�

A merge can only increase tree height by 
one over the smaller tree. So, a tree of 
height h� -1 was merged with a larger tree to 
form the new tree. Each tree then has � 2h� -1
nodes by the induction hypotheses for a 
total of at least 2h � nodes. QED.

Improvement: Path Compression

f g ha
b

c i
d

e

While we’re finding e, 
could we do anything else?

• Points everything along the path of a find to the 
root

• Reduces the height of the entire access path to 1

f g ha
b

c i
d

e

Path compression!
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Path Compression Example

f ha

b

c

d

e

g

find(e)

i

f ha

c

d

e

g

b

i

Path Compression Code
I D f i nd( Obj ect  x)  {

asser t ( hTabl e. cont ai ns( x) ) ;

I D par ent I D = hTabl e[ x] ;

I D hol d = par ent I D;

whi l e( up[ par ent I D]  ! = - 1)  {

par ent I D = up[ par ent I D] ;

}

I D r oot I D = par ent I D;

whi l e( up[ hol d]  ! = - 1)  {

I D ol dPar ent I D = up[ hol d] ;

up[ hol d]  = r oot I D;

hol d = ol dPar ent I D;

}

r et ur n r oot I D;

}

t ypedef  I D i nt ;

runtime:
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Digression: 
Doping at the Silicon Downs

How fast does log n grow? log n = 4 for n = 16
Let log(k) n = log (log (log … (log n)))

Then, let log* n = minimum k such that log(k) n � 1
How fast does log* n grow? log* n = 4 for n = 65536

Ackermann created a really big function A(x, y) with 
the inverse � (x, y) which is really small

How fast does � (x, y) grow? � (x, y) = 4 for n far
larger than the number of atoms in the universe 
(2300)

k logs

Complex Complexity of Weighted 
Union + Path Compression

• Tarjan proved that m weighted union and find 
operations on a set of n elements have worst 
case complexity O(m ��� (m, n))

• For all practical purposes this is amortized 
constant time

• In some practical cases, one or both is 
unnecessary because trees do not naturally 
get very deep.
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To Do

• Start Project III (only 5 days!)
• Read chapter 8 in the book
• Start reading chapter 7

Coming Up

• Algorithms
• Sorting (Chapter 7)
• Project III due (next Wednesday)

• Unix Tutorial (next Tuesday)


