

## Today's Outline

- Project
- Rules of competition
- Making a "good" maze
- Disjoint Set Union/Find ADT
- Up-trees
- Weighted Unions
- Path Compression


## Unix Tutorial!!

- Tuesday, July 31st
- 10:50am, Sieg 322

Printing worksheet
Shell
different shell quotes : '`
scripting, \#!
alias
variables / environment redirection, piping

Useful tools grep, egrep/grep -e sort
cut
file
tr
find, xargs diff, patch which, locate, whereis
Finding info
Techniques
Resources (ACM webpage, web, internal docs)
Process management
File management/permissions Filesystem layout

## What's a Good Maze?

## The Maze Construction Problem

- Given:
- collection of rooms: v
- connections between rooms (initially all closed): e
- Construct a maze:
- collection of rooms: $\mathbf{v}^{\prime}=\mathbf{v}$
- designated rooms in, $i \in V$, and out, $o \in V$
- collection of connections to knock down: $\mathbf{E}^{\prime} \subseteq \mathbf{E}$ such that one unique path connects every two rooms


## The Middle of the Maze

- So far, a number of walls have been knocked down while others remain.
- Now, we consider the wall between A and B.
- Should we knock it down?
- if A and B are otherwise
 connected
- if $A$ and $B$ are not otherwise connected


## Maze Construction Algorithm

While edges remain in E
(1) Remove a random edge $\mathbf{e}=(\mathbf{u}, \mathbf{v})$ from E
(2) If $u$ and $v$ have not yet been connected

- adde to $\mathbf{E}^{\prime}$
- mark u and vas connected

Mysterious note:
We'll see this algorithm again!

## Equivalence Relations

An equivalence relation $\mathcal{R}$ must have three properties

- reflexive: for any $x, x \mathcal{R} x$ is true
- symmetric: for any $x$ and $y, x \mathcal{R} y$ implies $y \mathcal{R} x$
- transitive: for any $x, y$, and $z, x \mathcal{R} y$ and $y \mathbb{R} z$ implies $x \mathbb{R} z$

Connection between rooms is an equivalence relation

- any room is connected to itself
- if room $\mathbf{a}$ is connected to room $\mathbf{b}$, then room $\mathbf{b}$ is connected to room a
- if room $\mathbf{a}$ is connected to room $\mathbf{b}$ and room $\mathbf{b}$ is connected to room c, then room $\mathbf{a}$ is connected to room $\mathbf{c}$


## Disjoint Set Union/Find ADT

- Union/Find operations
- create
- destroy
- union
- find

- Disjoint set equivalence property: every element of a DS U/F structure belongs to exactly one set
- Dynamic equivalence property: the set of an element can change after execution of a union


## Disjoint Set Union/Findt (More Formaly)

- Given a set $U=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
- Maintain a partition of $U$, a set of subsets of $U$ $\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ such that:
- each pair of subsets $S_{i}$ and $S_{j}$ are disjoint: $S_{i} \cap S_{j}=\varnothing$
- together, the subsets cover U: $U=\bigcup_{i=1}^{k} S_{i}$
- each subset has a unique name
- Union( $\mathrm{a}, \mathrm{b}$ ) creates a new subset which is the union of a's subset and b's subset
- Find(a) returns a unique name for a's subset
${ }^{\dagger}$ AKA the dynamic equivalence problem


## Example

Construct the maze on the right

Initial (the name of each set is underlined): $\{a\}\{b\}\{c\}\{d\}\{e\}\}\{q\}\{\underline{b}\}\{i\}$
(a) $3 \rightarrow+(b)+c$

Order of edges in blue

## Example, First Step

## 

find $(b) \Rightarrow \underline{b}$
find $(\mathrm{e}) \Rightarrow \underline{\mathrm{e}}$
find $(b) \neq$ find $(e)$ so:
add 1 to $\mathbf{E}^{\prime}$
union(b, e)
$\{\underline{a}\}\{\underline{b}, e\}\{c\}\{d\}\{f\}\{q\}\}[ \}\{i\}$


## Example, Continued <br> $\{a\}\{$ b, $e\}\{c\}\{d\}\{f\}\{0\}\{h\}\{i\}$ <br>  <br> Order of edges in blue

## Up-Tree Intuition

Finding the representative member of a set is somewhat like the opposite of finding whether a given key exists in a set.

So, instead of using trees with pointers from each node to its children; let's use trees with a pointer from each node to its parent.

## Up-Tree Union-Find Data Structure

- Each subset is an uptree with its root as its representative member
- All members of a given set are nodes in that set's up-tree
- Hash table maps input data to the node associated with that
 data

Find


runtime:
Just hang one root from the other!

The Whole Example (1/11)
union(b,e)


- ©
© © ©


The Whole Example (2/11) union(a,d)


The Whole Example (3/11) union(a,b)

(b)

(e)

The Whole Example (4/11)
find $(\mathrm{d})=$ find $(\mathrm{e})$
 No union!


While we're finding $\boldsymbol{e}$, could we do anything else?

The Whole Example (5/11)
union (hi)


# The Whole Example (6/11) 

 union( $\mathrm{c}, \mathrm{f}$ )

The Whole Example (7/11)

find (f)
union (a, c )


Could we do a better job on this union?

## The Whole Example (8/11)

find $(\mathrm{f})$
find(i)
union(c,h)


The Whole Example (9/11)
find $(\mathrm{e})=$ find $(\mathrm{h})$ and find $(\mathrm{b})=$ find $(\mathrm{c})$
So, no unions for either of these.


## The Whole Example (10/11)


find(d)
find $(\mathrm{g})$
union(c, g)


The Whole Example (11/11)
find $(\mathrm{g})=$ find $(\mathrm{h})$
So, no union.
And, we're done!


## Nifty storage trick

A forest of up-trees can easily be stored in an array.
Also, if the node names are integers or characters, we can use a very simple, perfect hash.


## Implementation

typedef ID int;

```
ID find(Object x) {
    assert (hTable.contains (x) );
    ID parentID = hTable[x];
    while(up[parentID] != -1) {
        parentID = up[xID];
    }
    return parentID;
}
```

runtime: O (depth) or ...
runtime: $\mathrm{O}(1)$

## Improvement: Weighted Union

- Always makes the root of the larger tree the new root
- Often cuts down on height of the new up-tree


Could we do a
better job on this union?


Weighted union!

## Weighted Union Code

typedef ID int;
ID union (ID $x$, ID $y$ ) \{
assert (up $[x]==-1$ );
assert (up $[y]==-1$ ) ;
if (weight[x] > weight[y]) \{

weight[x] $+=$ weight[y];
\}
else \{
up $[\mathrm{x}]=\mathrm{y}$;
weight $[y]+=$ weight $[x]$; new runtime of find:
\}
\}

## Weighted Union Find Analysis

- Finds with weighted union are O (max up-tree height)
- But, an up-tree of height $h$ with weighted union must have at least $2^{h}$ nodes

Base case: $h=0$, tree has $2^{0}=1$ node Induction hypothesis: assume true for $h<h^{\prime}$

A merge can only increase tree height by one over the smaller tree. So, a tree of height $h^{\prime}-1$ was merged with a larger tree to

- $\therefore, 2^{\text {max height }}=\mathrm{n}$ and $\max$ height $=\log n$ form the new tree. Each tree then has $\geq 2^{h^{\prime}-1}$ nodes by the induction hypotheses for a total of at least $2^{h^{\prime}}$ nodes. QED.
- So, find takes $\mathrm{O}(\log \mathrm{n})$


## Improvement: Path Compression

- Points everything along the path of a find to the root
- Reduces the height of the entire access path to 1


While we're finding e, could we do anything else? -


Path compression!

## Path Compression Example

find(e)


## Path Compression Code

```
typedef ID int;
ID find(Object x) {
    assert (hTable.contains (x)) ;
    ID parentID = hTable[x];
    ID hold = parentID;
    while(up[parentID] != -1) {
        parentID = up[parentID];
    }
    ID rootID = parentID;
    while(up[hold] != -1) {
        ID oldParentID = up[hold];
        up[hold] = rootID;
        hold = oldParentID;
        }
    return rootID;
}
```

runtime:

## Digression: Doping at the Silicon Downs

How fast does $\log \mathrm{n}$ grow? $\log \mathrm{n}=4$ for $\mathrm{n}=16$ Let $\log ^{(k)} \mathrm{n}=\underbrace{\log (\log (\log \ldots(\log \mathrm{n})))}_{k \log }$
Then, let $\log ^{*} \mathrm{n}=$ minimum $k$ such that $\log ^{(k)} \mathrm{n} \leq 1$
How fast does $\log ^{*} \mathrm{n}$ grow? $\log ^{*} \mathrm{n}=4$ for $\mathrm{n}=65536$
Ackermann created a really big function $A(x, y)$ with the inverse $\alpha(\mathrm{x}, \mathrm{y})$ which is really small
How fast does $\alpha(\mathrm{x}, \mathrm{y})$ grow? $\alpha(\mathrm{x}, \mathrm{y})=4$ for n far larger than the number of atoms in the universe (2300)

## Complex Complexity of Weighted Union + Path Compression

- Tarjan proved that $m$ weighted union and find operations on a set of $n$ elements have worst case complexity $\mathrm{O}(m \cdot \alpha(m, n))$
- For all practical purposes this is amortized constant time
- In some practical cases, one or both is unnecessary because trees do not naturally get very deep.


## To Do

- Start Project III (only 5 days!)
- Read chapter 8 in the book
- Start reading chapter 7


## Coming Up

- Algorithms
- Sorting (Chapter 7)
- Project III due (next Wednesday)
- Unix Tutorial (next Tuesday)

