
1

CSE 326: Data Structures
Lecture #14

Bart Niswonger
Summer Quarter 2001

Today’s Outline

• Project
– Rules of competition

– Comments?

•
– Probing continued

– Rehashing

– Extendible Hashing

– Case Study

2

Cost of a Database Query

I/O to CPU ratio is 300!

Extendible Hashing

• Hashing technique for huge data sets
– optimizes to reduce disk accesses
– each hash bucket fits on one disk block
– better than B-Trees if order is not important

• Table contains
– buckets, each fitting in one disk block, with the

data
– a directory that fits in one disk block used to hash

to the correct bucket

3

001 010 011 110 111101

Extendible Hash Table
• Directory - entries labeled by k bits & pointer

to bucket with all keys starting with its bits
• Each block contains keys & data matching on

the first j
�

k bits

000 100

(2)
00001
00011
00100
00110

(2)
01001
01011
01100

(3)
10001
10011

(3)
10101
10110
10111

(2)
11001
11011
11100
11110

directory for k = 3

Inserting (easy case)

001 010 011 110 111101000 100

(2)
00001
00011
00100
00110

(2)
01001
01011
01100

(3)
10001
10011

(3)
10101
10110
10111

(2)
11001
11011
11100
11110

insert(11011)
001 010 011 110 111101000 100

(2)
00001
00011
00100
00110

(2)
01001
01011
01100

(3)
10001
10011

(3)
10101
10110
10111

(2)
11001
11100
11110

4

Splitting
001 010 011 110 111101000 100

(2)
00001
00011
00100
00110

(2)
01001
01011
01100

(3)
10001
10011

(3)
10101
10110
10111

(2)
11001
11011
11100
11110

insert(11000)

001 010 011 110 111101000 100

(2)
00001
00011
00100
00110

(2)
01001
01011
01100

(3)
10001
10011

(3)
10101
10110
10111

(3)
11000
11001
11011

(3)
11100
11110

Rehashing

01 10 1100

(2)
01101

(2)
10000
10001
10011
10111

(2)
11001
11110

insert(10010)

001 010 011 110 111101000 100

No room to
insert and no
adoption!

Expand
directory

Now, it’s just a normal split.

5

When Directory Gets Too Large
• Store only pointers to the items

+ (potentially) much smaller M
+ fewer items in the directory
– one extra disk access!

• Rehash
+ potentially better distribution over the buckets
+ fewer unnecessary items in the directory
– can’t solve the problem if there’s simply too much

data

• What if these don’t work?
– use a B-Tree to store the directory!

Rehash of Hashing
• Hashing is a great data structure for storing

unordered data that supports insert, delete & find
• Both separate chaining (open) and open addressing

(closed) hashing are useful
– separate chaining flexible
– closed hashing uses less storage, but performs badly with

load factors near 1
– extendible hashing for very large disk-based data

• Hashing pros and cons
+ very fast
+ simple to implement, supports insert, delete, find
- lazy deletion necessary in open addressing, can waste

storage
- does not support operations dependent on order: min, max,

range

6

Case Study

• Spelling dictionary
– 30,000 words
– static
– arbitrary(ish)

preprocessing time

• Goals
– fast spell checking
– minimal storage

• Practical notes
– almost all searches are

successful
– words average about 8

characters in length
– 30,000 words at 8

bytes/word is 1/4 MB
– pointers are 4 bytes
– there are many

regularities in the
structure of English
words

Why?

Solutions

• Solutions
– sorted array + binary search

– open hashing

– closed hashing + linear probing

What kind of hash
function should we
use?

7

Storage

• Assume words are strings & entries are
pointers to strings

Array +
binary search Open hashing

…

Closed hashing
(open addressing)

How many
pointers does
each use?

Analysis
Binary search

– storage: n pointers + words = 360KB
– time: log2n � 15 probes/access, worst case

Open hashing
– storage: n + n/ � pointers + words (� = 1 � 600KB)
– time: 1 + � /2 probes/access, average (� = 1 � 1.5)

Closed hashing
– storage: n/ � pointers + words (� = 0.5 � 480KB)

– time: probes/access, average (� = 0.5 � 1.5)� � ������	
 ��

1

1
1

2

1

Which one should we use?

8

To Do

• Start Project III (only 1 week!)
• Start reading chapter 8 in the book

Coming Up

• Disjoint-set union-find ADT
• Quiz (Thursday)

