CSE 326: Data Structures
Lecture #14

More, E 1 Please

Bart Niswonger
Summer Quarter 2001

Today’s Outline

* Project
— Rules of competition
- Comm-ents’?

» Hash!"y
— Probing continued
— Rehashing
— Extendible Hashing
— Case Study

Cost of a Database Query

Query 11 Query cost (relative to the batch): 100,00%
Query textt select * from employee, joba where exmployee.job id = jobs.job id

SELECT MNested Loops/In...employee.employ...
Cost: D% Cost: 0% Cost: 759%
Clustesed Index Scan
1 Scanrming a clustered ndex, endrely or only a range
jobs.PE__job{ Physical speration: Chustered Index Scan
Sca

Cost: 21 Legioal eperation:
E shmated row count

sl T Size
E stimated 10 cost:
E stimated CPU cost

B, 3 Estimated Execution Plan E .n..pd cost

E stimated subtiee cost

Argument
DBJECT. fpubs] [dbol jemployee] jamployes_in

I/0 to CPU ratio is 300!

Extendible Hashing

» Hashing technique for huge data sets
— optimizes to reduce disk accesses
— each hash bucket fits on one disk block
— better than B-Trees if order is not important

e Table contains

— buckets, each fitting in one disk block, with the
data

— a directory that fits in one disk block used to hash
to the correct bucket

Extendible Hash Table

- entries labeled by k bits & pointer

to bucket with all keys starting with its bits

 Each

contains keys & data matching on

the first j < k bits

directory for k = 3

000 | 001 | 010 | 011 | 100 | 1201 | 110 | 111
(2) (2) (3) (3 (2)
00001 01001 10001 10101 11001
00011 01011 10011 10110 11011
00100 01100 10111 11100
00110 11110

Insertlng (easy case)

insert(11011) "0 T 001 [010 | 011 | 200 01| 110 111

) (2) (3) (3)
00001 01001 10001 10101
00011 01011 10011 10110
00100 01100 10111
00110

000 | 001 | 010 | 011 | 100 201 | 120| 111

(2) (2) (3) (3)
00001 01001 10001 10101
00011 01011 10011 10110
00100 01100 10111
00110

Splitting

insert(11000)

000 | 001 | 010 | 011 | 100 | 101 | 110 111
@) @) (3) (3) @)
00001 01001 10001 10101 11001
00011 01011 10011 10110 11011
00100 01100 10111 11100
00110 11110
000 | 001 | 010 | 011 | 100 | 101 | 110 111
@) @) (3) (3) 3) (3)
00001 01001 10001 10101 11000 11100
00011 01011 10011 10110 11001 11110
00100 01100 10111 11011
00110
Rehashing
insert(10010)
00 | o1 10 11 No room to
l \ insert and no
@) @)) adoptlon!
01101 10000 11001
10001 11110
10011
10111
000 | 001 | 010 | 011 | 100 | 1 Ki\\\\\ Expand
01| 110| 111 directory

When Directory Gets Too Large

» Store only pointers to the items
+ (potentially) much smaller M
+ fewer items in the directory
— one extra disk access!

* Rehash
+ potentially better distribution over the buckets
+ fewer unnecessary items in the directory

— can't solve the problem if there’s simply too much
data

» What if these don’t work?
— use a B-Tree to store the directory!

Rehash of Hashing

» Hashing is a great data structure for storing
unordered data that supports insert, delete & find

» Both separate chaining (open) and open addressing
(closed) hashing are useful
— separate chaining flexible

— closed hashing uses less storage, but performs badly with
load factors near 1

— extendible hashing for very large disk-based data

» Hashing pros and cons
+ very fast
+ simple to implement, supports insert, delete, find
- lazy deletion necessary in open addressing, can waste
storage
- does not support operations dependent on order: min, max,
range

Case Study

» Spelling dictionary * Practical notes
— 30,000 words — almost all searches areWhy,)
] successful)
— static — words average about 8
— arbitrary(ish) characters in length
preprocessing time — 30,000 words at 8
. Goals bytes/word is 1/4 MB
— pointers are 4 bytes
— fast spell checking _ there are many
— minimal storage regularities in the
structure of English
words
Solutions
e Solutions

— sorted array + binary search

— open hashing

— closed hashing + linear probing
What kind of hash

function should we
use?

Storage

« Assume words are & entries are
Array + Closed hashing
binary search Open hashing (open addressing)

(4—1{] []

{3 H
How many E K
pointers does | —
each use? — L]

Analysis

— storage: n pointers + words = 360KB
— time: log,n < 15 probes/access, worst case

— storage: n + n/A pointers + words (A = 1 = 600KB)
— time: 1 + A/2 probes/access, average (A =1 = 1.5)

— storage: n/A pointers + words (A = 0.5 = 480KB)

— time: %[H(%A)]probes/access, average A =0.5= 1.5)

Which one should we use?

To Do

 Start Project Il (only 1 week!)
» Start reading chapter 8 in the book

Coming Up

 Disjoint-set union-find ADT
e Quiz (Thursday)

