CSE 326: Data Structures
Lecture #13

More ease

Bart Niswonger
Summer Quarter 2001

Today’s Outline

. Hashing
— Hashing strings
— Universal hash functions
— Collisions
— Probing
— Rehashing

Good Hash Function for Strings?

e | want to be able to:

insert(“kale”)
insert(“Krispy Kreme”)
insert(“*kim chi”)

Good Hash Function for Strings?

Sum the ASCII values of the characters.

Consider only the first 3 characters.

— Uses only 2871 out of 17,576 entries in the table on
English words.

Let s = 5;S,S5S,...S5: choose
— hash(s) =s; +s,128 + 5;1282 + 5,128 + ... +5,128"

Think of the string as a base 128 number.

Problems:

— hash(“really, really big”) = well... something really, really
big

— hash(*one thing”) % 128 = hash(“other thing”) % 128

Universal Hashing

» For any fixed hash function, there will be
some pathological sets of inputs
— everything hashes to the same cell!
» Solution: Universal Hashing
— Start with a large (parameterized) class of hash
functions
* No sequence of inputs is bad for all of them!
— When your program starts up, pick one of the hash
functions to use at random (for the entire time)
— Now: no bad inputs, only unlucky choices!

« If universal class large, odds of making a bad choice very
low

« If you do find you are in trouble, just pick a different hash
function and re-hash the previous inputs

“Random” Vector Universal Hash

« Parameterized by prime size and vector:
a=<aya, ... a> where 0 <= g, < size

* Represent each key as r + 1 integers where k; <
size
— size = 11, key = 39752 ==> <3,9,7,5,2>

— size = 29, key = “hello world” ==>
<8,5,12,12,15,23,15,18,12,4>

h,(K) :(_rZa,-lqjmod size

dot product with a “ random” vector

“Random” Vector Universal Hash

» Strengths:
— works on any type as long as you can form k;'s
— if we’re building a static table, we can try many a’s

— arandom a has guaranteed good properties no
matter what we’re hashing

» Weaknesses
— must choose prime table size larger than any k;

Alternate Universal Hash Function

» Parameterized by k, a, and b:
— k * size should fit into an int
—a and b must be less than size

hy ap(X) =(@-x+b)mod k-size)/ k

Alternate Universal Hash: Example

« Context: hash integers in a table of size 16
let k =32, a =100, b =200
hy a5(1000) = ((100*1000 + 200) % (32*16)) / 32
= (100200 % 512) / 32
=360/32
=11

Alternate Universal Hash Function

» Strengths:

— if we’re building a static table, we can try many
parameter values

— random a,b has guaranteed good properties no
matter what we’re hashing

— can choose any size table
— very efficient if k and size are powers of 2
» Weaknesses
— still need to turn non-integer keys into integers

Hash Function Summary

» Goals of a hash function

— reproducible mapping from key to table entry

— evenly distribute keys across the table

— separate commonly occurring keys complete quickly
« Hash functions

— h(n) =n % size

— h(n) = string as base 128 number % size

— One Universal hash function: dot product with random
vector

— Other Universal hash functions...

How to Design a Hash Function

* Know what your keys are
» Study how your keys are distributed

« Try to include all important information in a
key in the construction of its hash

* Try to make “neighboring” keys hash to very
different places

* Prune the features used to create the hash
until it runs “fast enough” (very application
dependent)

Collisions

» Pigeonhole principle says we can’t avoid all
collisions
— try to hash without collision m keys into n slots with m > n
— try to put 6 pigeons into 5 holes

* What do we do when two keys hash to the same
entry?
— open hashing: put little dictionaries in each entry

“—— shove extra pigeons in one hole!

— closed hashing: pick a next entry to try

Open Hashing or
Hashing with Chaining
h(@ =h
« Put a little dictionary at hg _ h%
each entry
— choose type as » a » d
appropriate >
— common case is
unordered linked list > e b
(chain)
* Properties
— A can be greater than 1 » C

— performance degrades 6
with length of chains

Open Hashing Code

Dictionary & findBucket(const Key & k) {
return tabl e[hash(k) % abl e. si ze];

}
voi d insert(const Key & Kk, voi d del ete(const Key & k)
const Val ue & v)
{ fi ndBucket (k). del et e(k);
findBucket (k). insert(k,v); }
} Val ue & find(const Key & k)
{
return findBucket (k). find(k);
}

Load Factor in Open Hashing

e Search cost
— unsuccessful search:

— successful search:

» Desired load factor:

Closed Hashing / Open Addressing

What if we only allow one Key

at each entry? h(a) = h(d) °
— two objects that hash to the h(e) = h(b)
same spot can’t both go there a
— first one there gets the spot 2l 4 >
— next one must go in another 3
spot e
* Properties 4 b >
-A<1 5
— performance degrades with ¢
difficulty of finding right spot 6

Probing

* Probing how to:
— First probe - given a key k, hash to h(k)
— Second probe - if h(k) is occupied, try h(k) + f(1)
— Third probe - if h(k) + f(1) is occupied, try h(k) +
f(2)
— And so forth
» Probing properties
— we force f(0) =0
— the it" probe is to (h(k) + f(i)) mod size
— if ireaches size - 1, the probe has failed
— depending on f(), the probe may fail sooner
— long sequences of probes are costly!

Linear Probing

* Probe sequence is f(i) =i
— h(k) mod size
— h(k) + 1 mod size
— h(k) + 2 mod size

 findEntry using linear probing:
bool findEntry(const Key & k, Entry *& entry) {
i nt probePoint = hash,(k);
do {
entry = &t abl e[probePoint];
probePoint = (probePoint + 1) %size;

} while ('entry->i senpty() && entry->key != k);

return !entry->i sempty();
}

Linear Probing Example

insert(76) insert(93) insert(40) insert(47) insert(10) insert(55)
55%7 = 6

76%7=6 93%7=2 40%7=5 47%7/=5 10%7=3

0 0 0 0 47 0 47

1 1 1 1 1

2 2 03 2 03 2 93 2 03

3 3 3 3 3 10

4 4 4 4 4

5 5 5 40 5 40 5 40

% 76 % 76 % 76 % 76 % 76
probes. 1 1 1 3 1

0

1

2

47

55

93

10

40

76

3

10

Load Factor in Linear Probing

For any A < 1, linear probing will find an empty
slot

Search cost (for large table sizes)

— successful search:1 1+L
207 (1-2)

— unsuccessful search: 1 1+%
20 (1-41)

Linear probing suffers from primary clustering
Performance quickly degrades for A > 1/2

Quadratic Probing

* Probe sequence is))
— h(k) mod size f(i) = i2
— (h(k) + 1) mod size
— (h(k) + 4) mod size
— (h(k) + 9) mod size

 findEntry using quadratic probing:
bool findEntry(const Key & k, Entry *& entry) {
i nt probePoint = hash;(k), nunProbes = 0;
do {
entry = &t abl e[probePoint];
nunPr obes++;

pr obePoi nt = (probePoi nt + 2*nunProbes - 1) %si ze;

} while (lentry->isenpty() && entry->key != key);
return !entry->i sempty();
}

11

Quadratic Probing Example J

insert(76)
76%7 =6
0

1

2

76
probes. 1

insert(40)
40%7 =5
0

1

2

40
76

insert(48)

48%7 =6
0 48
1

2

40
76

insert(5)
5%7 =5
0 47
1

2 5

40
76

insert(55)

55%7 = 6
0 47
1

25

76

Quadratic Probing Example L

insert(76)
76%7 =6
0

1

2

76
probes. 1

insert(93)
93%7 =2
0

1

2 03

76

insert(40)
40%7 =5
0

1

2 93

40
76

insert(35)

35%7=0
935
1

2 03

40
76

insert(47)
47%7=5

035
1

293

40
76

12

Quadratic Probing Succeeds (or i <)

* If size is prime and A <2, then quadratic
probing will find an empty slot in size/2
probes or fewer.

—showforallo <i, j <size/2andi = j
(h(x) +i2 nod size # (h(x) + j? nod size
— by contradiction: suppose that for some i, j:
(h(x) +1i2 nod size = (h(x) + 2 nod size
i2 mod size = j? nod size
(i2-j% mod size =0

[(i +j)(i - j)] nod size =0
—buthowcani +j =o0ori +j = sizewhen
i =jandi,j < sizel2?
—samefori - j nod size = 0

Quadratic Probing May Falil (or 1 >)

* For any i larger than size/2, there is
some j smaller than i that adds with i to
equal size (or a multiple of size). D’oh!

Load Factor in Quadratic Probing

* For any A <%, quadratic probing will find
an empty slot; for greater A, quadratic
probing may find a slot

» Quadratic probing does not suffer from
primary clustering

» Quadratic probing does suffer from
secondary clustering
— How could we possibly solve this?

Double Hashing

* Probe sequence is f(i)=i- hashz(x)
— h,(k) mod size
— (hy(k) + 1 - h,(x)) mod size
— (hy(k) + 2 - h,(x)) mod size

» Code for finding the next linear probe:

bool findEntry(const Key & k, Entry *& entry) {
i nt probePoint = hash;(k), hashlncr = hash,(k);
do {
entry = &t abl e[probePoint];
pr obePoi nt = (probePoi nt + hashlncr) %si ze;
} while (lentry->isenpty() && entry->key != k);
return !entry->i sempty();

14

A Good Double Hash Function...

...Is quick to evaluate.
...differs from the original hash function.
...never evaluates to 0 (mod size).

One good choice is to choose
prime R < size

and:
hash,(x) = R - (x mod R)

Double Hashing Example

insert(76) insert(93) insert(40) insert(47) insert(10) insert(55)
76%7=6 93%7=2 40%7=5 47%7=5 10%7=3 55%7=6

5 - (479%65) = 3 5 - (55%5) = 5

0 0 0 0 0 0

! 1 1 Y a7 Y a7 Ya7

Z 2 03 2 03 % 03 % 03 2 03

3 3 3 3 3 10 3 10

4 4 4 4 4 4 55

> > % 40 % 40 > 40 > 40

® 76 ® 76 ® 76 ® 76 ® 76 ® 76
probes. 1 1 1 2 1 2

15

Load Factor in Double Hashing

For any A < 1, double hashing will find an empty
slot (given appropriate table size and hash,)

Search cost appears to approach optimal

(random hash):

1

— successful search: —|ln——
A 1-A

1
— unsuccessful search; ——

No primary clustering and no secondary

clustering

One extra hash calculation

Deletion in Closed Hashing

delete(2)

Qg

0

1
2
7

2
3
4
5
6

* Must use lazy deletion!

find(7)

90

11 Whereisit?
> A

37

4

5

6

e Oninsertion, treat a deleted item as an empty

slot

16

The Squished Pigeon Principle

An insert using closed hashing cannot work with
a load factor of 1 or more.

An insert using closed hashing with quadratic
probing may not work with a load factor of ¥z or
more.

Whether you use open or closed hashing, large
load factors lead to poor performance!

How can we relieve the pressure on the
pigeons?
Hint: remember what happened when we
overran ad-Heap's array!

Rehashing

* When the load factor gets “too large” (over a
constant threshold on 1), rehash all the elements
into a new, larger table:

— takes O(n), but amortized O(1) as long as we (just
about) double table size on the resize

— spreads keys back out, may drastically improve
performance

— gives us a chance to retune parameterized hash
functions

— avoids failure for closed hashing techniques
— allows arbitrarily large tables starting from a small table
— clears out lazily deleted items

17

To Do

Finish Project I
Read chapter 5 in the book

Coming Up

Extendible hashing (hashing for HUGE
data sets)

Disjoint-set union-find ADT
Project Il due (Wednesday)
Project Ill Handout (Wednesday)
Quiz (Thursday)

18

