
1

CSE 326: Data Structures
Lecture #13

Bart Niswonger
Summer Quarter 2001

Today’s Outline

•
– Hashing strings

– Universal hash functions

– Collisions

– Probing

– Rehashing

– …

2

Good Hash Function for Strings?
• I want to be able to:

insert(“kale”)
insert(“Krispy Kreme”)
insert(“kim chi”)

Good Hash Function for Strings?
• Sum the ASCII values of the characters.
• Consider only the first 3 characters.

– Uses only 2871 out of 17,576 entries in the table on
English words.

• Let s = s1s2s3s4…s5: choose
– hash(s) = s1 + s2128 + s31282 + s41283 + … + sn128n

• Problems:
– hash(“really, really big”) = well… something really, really

big
– hash(“one thing”) % 128 = hash(“other thing”) % 128

Think of the string as a base 128 number.

3

Universal Hashing
• For any fixed hash function, there will be

some pathological sets of inputs
– everything hashes to the same cell!

• Solution: Universal Hashing
– Start with a large (parameterized) class of hash

functions
• No sequence of inputs is bad for all of them!

– When your program starts up, pick one of the hash
functions to use at random (for the entire time)

– Now: no bad inputs, only unlucky choices!
• If universal class large, odds of making a bad choice very

low
• If you do find you are in trouble, just pick a different hash

function and re-hash the previous inputs

“Random” Vector Universal Hash

• Parameterized by prime size and vector:
a = <a0 a1 … ar> where 0 <= ai < size

• Represent each key as r + 1 integers where ki <
size
– size = 11, key = 39752 ==> <3,9,7,5,2>
– size = 29, key = “hello world” ==>

<8,5,12,12,15,23,15,18,12,4>

ha(k) = sizeka
r

i
ii mod

0

��
����

�
dot product with a “ random” vector

4

“Random” Vector Universal Hash

• Strengths:
– works on any type as long as you can form ki’s
– if we’re building a static table, we can try many a’s
– a random a has guaranteed good properties no

matter what we’re hashing

• Weaknesses
– must choose prime table size larger than any ki

Alternate Universal Hash Function

• Parameterized by k, a, and b:
– k * size should fit into an int

– a and b must be less than size

hk,a,b(x) = � �� � ksizekbxa /mod ���

5

Alternate Universal Hash: Example

• Context: hash integers in a table of size 16

let k = 32, a = 100, b = 200

hk,a,b(1000) = ((100*1000 + 200) % (32*16)) / 32

= (100200 % 512) / 32

= 360 / 32

= 11

Alternate Universal Hash Function
• Strengths:

– if we’re building a static table, we can try many
parameter values

– random a,b has guaranteed good properties no
matter what we’re hashing

– can choose any size table
– very efficient if k and size are powers of 2

• Weaknesses
– still need to turn non-integer keys into integers

6

Hash Function Summary
• Goals of a hash function

– reproducible mapping from key to table entry
– evenly distribute keys across the table
– separate commonly occurring keys complete quickly

• Hash functions
– h(n) = n % size
– h(n) = string as base 128 number % size
– One Universal hash function: dot product with random

vector
– Other Universal hash functions…

How to Design a Hash Function
• Know what your keys are
• Study how your keys are distributed
• Try to include all important information in a

key in the construction of its hash
• Try to make “neighboring” keys hash to very

different places
• Prune the features used to create the hash

until it runs “fast enough” (very application
dependent)

7

Collisions

• Pigeonhole principle says we can’t avoid all
collisions
– try to hash without collision m keys into n slots with m > n
– try to put 6 pigeons into 5 holes

• What do we do when two keys hash to the same
entry?
– open hashing: put little dictionaries in each entry

– closed hashing: pick a next entry to try
shove extra pigeons in one hole!

3

2

1

0

6

5

4

a d

e b

c

Open Hashing or
Hashing with Chaining

• Put a little dictionary at
each entry
– choose type as

appropriate
– common case is

unordered linked list
(chain)

• Properties
– � can be greater than 1
– performance degrades

with length of chains

h(a) = h(d)
h(e) = h(b)

8

Open Hashing Code

Di ct i onar y & f i ndBucket (const Key & k) {

r et ur n t abl e[hash(k) %t abl e. si ze] ;

}

voi d i nser t (const Key & k,

const Val ue & v)

{

f i ndBucket (k) . i nser t (k , v) ;

}

voi d del et e(const Key & k)
{

f i ndBucket (k) . del et e(k) ;
}

Val ue & f i nd(const Key & k)
{

r et ur n f i ndBucket (k) . f i nd(k) ;
}

Load Factor in Open Hashing

• Search cost
– unsuccessful search:

– successful search:

• Desired load factor:

9

Closed Hashing / Open Addressing

What if we only allow one Key
at each entry?
– two objects that hash to the

same spot can’t both go there
– first one there gets the spot
– next one must go in another

spot

• Properties
– ��� 1
– performance degrades with

difficulty of finding right spot

a

c

e
3

2

1

0

6

5

4

h(a) = h(d)
h(e) = h(b)

d

b

Probing
• Probing how to:

– First probe - given a key k, hash to h(k)
– Second probe - if h(k) is occupied, try h(k) + f(1)
– Third probe - if h(k) + f(1) is occupied, try h(k) +

f(2)
– And so forth

• Probing properties
– we force f(0) = 0
– the ith probe is to (h(k) + f(i)) mod size
– if i reaches size - 1, the probe has failed
– depending on f(), the probe may fail sooner
– long sequences of probes are costly!

10

Linear Probing

• Probe sequence is
– h(k) mod size
– h(k) + 1 mod size
– h(k) + 2 mod size
– …

• findEntry using linear probing:
bool f i ndEnt r y(const Key & k, Ent r y * & ent r y) {

i nt pr obePoi nt = hash1(k) ;
do {

ent r y = &t abl e[pr obePoi nt] ;
pr obePoi nt = (pr obePoi nt + 1) % si ze;

} whi l e (! ent r y- >i sEmpt y() && ent r y- >key ! = k) ;
r et ur n ! ent r y- >i sEmpt y() ;

}

Linear Probing Example

probes:

47

93

40

103

2

1

0

6

5

4

insert(55)
55%7 = 6

3

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

1

76

3

2

1

0

6

5

4

insert(93)
93%7 = 2

1

93

76

3

2

1

0

6

5

4

insert(40)
40%7 = 5

1

93

40

76

3

2

1

0

6

5

4

insert(47)
47%7 = 5

3

47

93

40

76

103

2

1

0

6

5

4

insert(10)
10%7 = 3

1

55

76

93

40

47

11

Load Factor in Linear Probing
• For any

�
< 1, linear probing will find an empty

slot
• Search cost (for large table sizes)

– successful search:

– unsuccessful search:

• Linear probing suffers from primary clustering
• Performance quickly degrades for

�
> 1/2

� � ���
����� 	

21

1
1

2

1 �
�
 ���

����� �� �
1

1
1

2
1

Quadratic Probing
• Probe sequence is

– h(k) mod size
– (h(k) + 1) mod size
– (h(k) + 4) mod size
– (h(k) + 9) mod size
– …

• findEntry using quadratic probing:

�

bool f i ndEnt r y(const Key & k, Ent r y * & ent r y) {
i nt pr obePoi nt = hash1(k) , numPr obes = 0;
do {

ent r y = &t abl e[pr obePoi nt] ;
numPr obes++;
pr obePoi nt = (pr obePoi nt + 2* numPr obes - 1) % s i ze;

} whi l e (! ent r y- >i sEmpt y() && ent r y- >key ! = key) ;
r et ur n ! ent r y- >i sEmpt y() ;

}

12

Quadratic Probing Example J

probes:

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

1

76

3

2

1

0

6

5

4

insert(40)
40%7 = 5

1

40 40

76

3

2

1

0

6

5

4

insert(48)
48%7 = 6

2

48 47

40

76

3

2

1

0

6

5

4

insert(5)
5%7 = 5

3

5 5

40

553

2

1

0

6

5

4

insert(55)
55%7 = 6

3

76

47

Quadratic Probing Example L

probes:

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

1

35

93

40

76

3

2

1

0

6

5

4

insert(47)
47%7 = 5

�

76

3

2

1

0

6

5

4

insert(93)
93%7 = 2

1

93 93

76

3

2

1

0

6

5

4

insert(40)
40%7 = 5

1

40

93

40

76

3

2

1

0

6

5

4

insert(35)
35%7 = 0

1

35

13

Quadratic Probing Succeeds (for
���

½)

• If size is prime and
�
�� �� ½, then quadratic

probing will find an empty slot in size/2
probes or fewer.
– show for all 0 �� �� i , j �� �� si ze/ 2 and i �� �� j

(h(x) + i 2) mod si ze �� �� (h(x) + j 2) mod si ze

– by contradiction: suppose that for some i, j:
(h(x) + i 2) mod si ze = (h(x) + j 2) mod si ze
i 2 mod si ze = j 2 mod si ze
(i 2 - j 2) mod si ze = 0
[(i + j) (i - j)] mod si ze = 0

– but how can i + j = 0 or i + j = si ze when
i �� �� j and i , j �� �� si ze/ 2?

– same for i - j mod si ze = 0

Quadratic Probing May Fail (for
�

> ½)

• For any i larger than size/2, there is
some j smaller than i that adds with i to
equal size (or a multiple of size). D’oh!

14

Load Factor in Quadratic Probing

• For any
���

½, quadratic probing will find
an empty slot; for greater

�
, quadratic

probing may find a slot
• Quadratic probing does not suffer from

primary clustering
• Quadratic probing does suffer from

secondary clustering
– How could we possibly solve this?

Double HashingDouble Hashing

� �• Probe sequence is
– h1(k) mod size
– (h1(k) + 1 � h2(x)) mod size
– (h1(k) + 2 � h2(x)) mod size
– …

• Code for finding the next linear probe:
bool f i ndEnt r y(const Key & k, Ent r y * & ent r y) {

i nt pr obePoi nt = hash1(k) , hashI ncr = hash2(k) ;
do {

ent r y = &t abl e[pr obePoi nt] ;
pr obePoi nt = (pr obePoi nt + hashI ncr) % s i ze;

} whi l e (! ent r y- >i sEmpt y() && ent r y- >key ! = k) ;
r et ur n ! ent r y- >i sEmpt y() ;

}

15

A Good Double Hash Function…

…is quick to evaluate.

…differs from the original hash function.

…never evaluates to 0 (mod size).

One good choice is to choose

prime R < size

and:

hash2(x) = R - (x mod R)

Double HashingDouble Hashing Example

probes:

93

55

40

103

2

1

0

6

5

4

insert(55)
55%7 = 6

5 - (55%5) = 5

2

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

1

76

3

2

1

0

6

5

4

insert(93)
93%7 = 2

1

93

76

3

2

1

0

6

5

4

insert(40)
40%7 = 5

1

93

40

76

3

2

1

0

6

5

4

insert(47)
47%7 = 5

5 - (47%5) = 3

2

47

93

40

76

103

2

1

0

6

5

4

insert(10)
10%7 = 3

1

47

76

93

40

47

16

Load Factor in Double Hashing
• For any

�
< 1, double hashing will find an empty

slot (given appropriate table size and hash2)
• Search cost appears to approach optimal

(random hash):
– successful search:

– unsuccessful search:

• No primary clustering and no secondary
clustering

• One extra hash calculation

�
�1

1

��
�1

1
ln

1

0

1

2

73

2

1

0

6

5

4

delete(2)

0

1

73

2

1

0

6

5

4

find(7)

Where is it?!

Deletion in Closed Hashing

• Must use lazy deletion!
• On insertion, treat a deleted item as an empty

slot

17

The Squished Pigeon Principle

• An insert using closed hashing cannot work with
a load factor of 1 or more.

• An insert using closed hashing with quadratic
probing may not work with a load factor of ½ or
more.

• Whether you use open or closed hashing, large
load factors lead to poor performance!

• How can we relieve the pressure on the
pigeons?

Hint: remember what happened when we
overran a d-Heap’s array!

Rehashing
• When the load factor gets “too large” (over a

constant threshold on
�

), rehash all the elements
into a new, larger table:
– takes O(n), but amortized O(1) as long as we (just

about) double table size on the resize
– spreads keys back out, may drastically improve

performance
– gives us a chance to retune parameterized hash

functions
– avoids failure for closed hashing techniques
– allows arbitrarily large tables starting from a small table
– clears out lazily deleted items

18

To Do

• Finish Project II
• Read chapter 5 in the book

Coming Up

• Extendible hashing (hashing for HUGE
data sets)

• Disjoint-set union-find ADT
• Project II due (Wednesday)
• Project III Handout (Wednesday)
• Quiz (Thursday)

