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CSE 326: Data Structures
Lecture #13

Bart Niswonger
Summer Quarter 2001

Today’s Outline

•
– Hashing strings

– Universal hash functions

– Collisions

– Probing

– Rehashing

– …
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Good Hash Function for Strings?
• I want to be able to:

insert(“kale”)
insert(“Krispy Kreme”)
insert(“kim chi”)

Good Hash Function for Strings?
• Sum the ASCII values of the characters.
• Consider only the first 3 characters.

– Uses only 2871 out of 17,576 entries in the table on 
English words.

• Let s = s1s2s3s4…s5: choose 
– hash(s) = s1 + s2128 + s31282 + s41283 + … + sn128n     

• Problems:
– hash(“really, really big”) = well… something really, really 

big
– hash(“one thing”) % 128 = hash(“other thing”) % 128

Think of the string as a base 128 number.
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Universal Hashing
• For any fixed hash function, there will be 

some pathological sets of inputs
– everything hashes to the same cell!

• Solution:  Universal Hashing
– Start with a large (parameterized) class of hash 

functions
• No sequence of inputs is bad for all of them!

– When your program starts up, pick one of the hash 
functions to use at random (for the entire time)

– Now: no bad inputs, only unlucky choices!
• If universal class large, odds of making a bad choice very 

low
• If you do find you are in trouble, just pick a different hash 

function and re-hash the previous inputs

“Random” Vector Universal Hash

• Parameterized by prime size and vector:
a = <a0 a1 … ar> where 0 <= ai < size

• Represent each key as r + 1 integers where ki < 
size
– size = 11, key = 39752 ==> <3,9,7,5,2>
– size = 29, key = “hello world” ==> 

<8,5,12,12,15,23,15,18,12,4>

ha(k) = sizeka
r

i
ii mod

0

��
����

�
dot product with a “ random”  vector
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“Random” Vector Universal Hash

• Strengths:
– works on any type as long as you can form ki’s
– if we’re building a static table, we can try many a’s
– a random a has guaranteed good properties no 

matter what we’re hashing

• Weaknesses
– must choose prime table size larger than any ki

Alternate Universal Hash Function

• Parameterized by k, a, and b:
– k * size should fit into an int

– a and b must be less than size

hk,a,b(x) = � �� � ksizekbxa /mod ���
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Alternate Universal Hash: Example

• Context: hash integers in a table of size 16

let k = 32, a = 100, b = 200

hk,a,b(1000) = ((100*1000 + 200) % (32*16)) / 32

= (100200 % 512) / 32

= 360 / 32

= 11

Alternate Universal Hash Function
• Strengths:

– if we’re building a static table, we can try many 
parameter values

– random a,b has guaranteed good properties no 
matter what we’re hashing

– can choose any size table
– very efficient if k and size are powers of 2

• Weaknesses
– still need to turn non-integer keys into integers



6

Hash Function Summary
• Goals of a hash function

– reproducible mapping from key to table entry
– evenly distribute keys across the table
– separate commonly occurring keys complete quickly

• Hash functions
– h(n) = n % size
– h(n) = string as base 128 number % size
– One Universal hash function: dot product with random 

vector
– Other Universal hash functions…

How to Design a Hash Function
• Know what your keys are
• Study how your keys are distributed
• Try to include all important information in a 

key in the construction of its hash
• Try to make “neighboring” keys hash to very 

different places
• Prune the features used to create the hash 

until it runs “fast enough” (very application 
dependent)
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Collisions

• Pigeonhole principle says we can’t avoid all 
collisions
– try to hash without collision m keys into n slots with m > n
– try to put 6 pigeons into 5 holes

• What do we do when two keys hash to the same 
entry?
– open hashing: put little dictionaries in each entry

– closed hashing: pick a next entry to try
shove extra pigeons in one hole!
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Open Hashing or
Hashing with Chaining

• Put a little dictionary at 
each entry
– choose type as 

appropriate
– common case is 

unordered linked list 
(chain)

• Properties
– � can be greater than 1
– performance degrades 

with length of chains

h(a) = h(d)
h(e) = h(b)
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Open Hashing Code

Di ct i onar y & f i ndBucket ( const  Key & k)  {

r et ur n t abl e[ hash( k) %t abl e. si ze] ;

}

voi d i nser t ( const  Key & k,  

const  Val ue & v)

{

f i ndBucket ( k) . i nser t ( k , v) ;

}

voi d del et e( const  Key & k)
{

f i ndBucket ( k) . del et e( k) ;
}

Val ue & f i nd( const  Key & k)
{

r et ur n f i ndBucket ( k) . f i nd( k) ;
}

Load Factor in Open Hashing

• Search cost
– unsuccessful search:

– successful search:

• Desired load factor:
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Closed Hashing / Open Addressing

What if we only allow one Key 
at each entry?
– two objects that hash to the 

same spot can’t both go there
– first one there gets the spot
– next one must go in another 

spot

• Properties
– ��� 1
– performance degrades with 

difficulty of finding right spot
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h(a) = h(d)
h(e) = h(b)
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Probing
• Probing how to:

– First probe - given a key k, hash to h(k) 
– Second probe - if h(k) is occupied, try h(k) + f(1)
– Third probe - if h(k) + f(1) is occupied, try h(k) + 

f(2)
– And so forth

• Probing properties
– we force f(0) = 0
– the ith probe is to (h(k) + f(i)) mod size
– if i reaches size - 1, the probe has failed
– depending on f(), the probe may fail sooner
– long sequences of probes are costly!
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Linear Probing

• Probe sequence is
– h(k) mod size
– h(k) + 1 mod size
– h(k) + 2 mod size
– … 

• findEntry using linear probing:
bool  f i ndEnt r y( const  Key & k,  Ent r y * & ent r y)  {

i nt  pr obePoi nt  = hash1( k) ;
do {

ent r y = &t abl e[ pr obePoi nt ] ;
pr obePoi nt  = ( pr obePoi nt  + 1)  % si ze;

}  whi l e ( ! ent r y- >i sEmpt y( )  && ent r y- >key ! = k) ;
r et ur n ! ent r y- >i sEmpt y( ) ;

}

Linear Probing Example

probes:
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insert(55)
55%7 = 6

3
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insert(76)
76%7 = 6

1
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insert(93)
93%7 = 2
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insert(40)
40%7 = 5

1
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insert(47)
47%7 = 5

3
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insert(10)
10%7 = 3

1

55

76

93

40

47
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Load Factor in Linear Probing
• For any

�
< 1, linear probing will find an empty 

slot
• Search cost (for large table sizes)

– successful search:

– unsuccessful search:

• Linear probing suffers from primary clustering
• Performance quickly degrades for 

�
> 1/2

� � ���
����� 	
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Quadratic Probing
• Probe sequence is

– h(k) mod size
– (h(k) + 1) mod size
– (h(k) + 4) mod size
– (h(k) + 9) mod size
– … 

• findEntry using quadratic probing:

�

bool  f i ndEnt r y( const  Key & k,  Ent r y * & ent r y)  {
i nt  pr obePoi nt  = hash1( k) ,  numPr obes = 0;
do {

ent r y = &t abl e[ pr obePoi nt ] ;
numPr obes++;
pr obePoi nt  = ( pr obePoi nt  + 2* numPr obes - 1)  % s i ze;

}  whi l e ( ! ent r y- >i sEmpt y( )  && ent r y- >key ! = key) ;
r et ur n ! ent r y- >i sEmpt y( ) ;

}
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Quadratic Probing Example J

probes:
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insert(76)
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insert(40)
40%7 = 5
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insert(48)
48%7 = 6
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insert(5)
5%7 = 5
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insert(55)
55%7 = 6
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Quadratic Probing Example L

probes:
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insert(76)
76%7 = 6
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insert(93)
93%7 = 2
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insert(40)
40%7 = 5
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insert(35)
35%7 = 0

1

35
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Quadratic Probing Succeeds (for 
���

½)

• If size is prime and 
�
�� �� ½, then quadratic 

probing will find an empty slot in size/2 
probes or fewer.
– show for all 0 �� �� i ,  j  �� �� si ze/ 2 and i  �� �� j

( h( x)  + i 2)  mod si ze �� �� ( h( x)  + j 2)  mod si ze

– by contradiction: suppose that for some i, j:
( h( x)  + i 2)  mod si ze = ( h( x)  + j 2)  mod si ze
i 2 mod si ze = j 2 mod si ze
( i 2 - j 2)  mod si ze = 0
[ ( i  + j ) ( i  - j ) ]  mod si ze = 0

– but how can i  + j  = 0 or i  + j  = si ze when
i  �� �� j and i , j  �� �� si ze/ 2?

– same for i  - j  mod si ze = 0

Quadratic Probing May Fail (for 
�

> ½)

• For any i larger than size/2, there is 
some j smaller than i that adds with i to 
equal size (or a multiple of size). D’oh!
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Load Factor in Quadratic Probing

• For any
���

½, quadratic probing will find 
an empty slot; for greater 

�
, quadratic 

probing may find a slot
• Quadratic probing does not suffer from 

primary clustering
• Quadratic probing does suffer from 

secondary clustering
– How could we possibly solve this?

Double HashingDouble Hashing

� �• Probe sequence is
– h1(k) mod size
– (h1(k) + 1 � h2(x)) mod size
– (h1(k) + 2 � h2(x)) mod size
– … 

• Code for finding the next linear probe:
bool  f i ndEnt r y( const  Key & k,  Ent r y * & ent r y)  {

i nt  pr obePoi nt  = hash1( k) ,  hashI ncr  = hash2( k) ;
do {

ent r y = &t abl e[ pr obePoi nt ] ;
pr obePoi nt  = ( pr obePoi nt  + hashI ncr )  % s i ze;

}  whi l e ( ! ent r y- >i sEmpt y( )  && ent r y- >key ! = k) ;
r et ur n ! ent r y- >i sEmpt y( ) ;

}
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A Good Double Hash Function… 

…is quick to evaluate.

…differs from the original hash function.

…never evaluates to 0 (mod size).

One good choice is to choose 

prime R < size

and:

hash2(x) = R - (x mod R)

Double HashingDouble Hashing Example

probes:
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insert(55)
55%7 = 6

5 - (55%5) = 5
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insert(76)
76%7 = 6
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insert(93)
93%7 = 2
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insert(40)
40%7 = 5

1

93

40
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insert(47)
47%7 = 5

5 - (47%5) = 3

2

47

93

40

76

103

2

1

0
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4

insert(10)
10%7 = 3

1

47

76

93

40

47
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Load Factor in Double Hashing
• For any

�
< 1, double hashing will find an empty 

slot (given appropriate table size and hash2)
• Search cost appears to approach optimal 

(random hash):
– successful search:

– unsuccessful search:

• No primary clustering and no secondary 
clustering

• One extra hash calculation

�
�1
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delete(2)
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find(7)

Where is it?!

Deletion in Closed Hashing

• Must use lazy deletion!
• On insertion, treat a deleted item as an empty 

slot
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The Squished Pigeon Principle

• An insert using closed hashing cannot work with 
a load factor of 1 or more.

• An insert using closed hashing with quadratic 
probing may not work with a load factor of ½ or 
more.

• Whether you use open or closed hashing, large 
load factors lead to poor performance!

• How can we relieve the pressure on the 
pigeons?

Hint: remember what happened when we 
overran a d-Heap’s array!

Rehashing
• When the load factor gets “too large” (over a 

constant threshold on 
�

), rehash all the elements 
into a new, larger table:
– takes O(n), but amortized O(1) as long as we (just 

about) double table size on the resize
– spreads keys back out, may drastically improve 

performance
– gives us a chance to retune parameterized hash 

functions
– avoids failure for closed hashing techniques
– allows arbitrarily large tables starting from a small table
– clears out lazily deleted items 
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To Do

• Finish Project II
• Read chapter 5 in the book

Coming Up

• Extendible hashing (hashing for HUGE
data sets)

• Disjoint-set union-find ADT
• Project II due (Wednesday)
• Project III Handout (Wednesday)
• Quiz (Thursday)


