CSE 326: Data Structures Lecture \#13
 More Hash please

Bart Niswonger Summer Quarter 2001

Today's Outline

- Hashing
- Hashing strings
- Universal hash functions
- Collisions
- Probing
- Rehashing
- ...

Good Hash Function for Strings?

- I want to be able to:

insert("kale")
insert("Krispy Kreme")
insert("kim chi")

Good Hash Function for Strings?

- Sum the ASCII values of the characters.
- Consider only the first 3 characters.
- Uses only 2871 out of 17,576 entries in the table on English words.
- Let $\mathrm{S}=\mathrm{S}_{1} \mathrm{~S}_{2} \mathrm{~S}_{3} \mathrm{~S}_{4} \ldots \mathrm{~S}_{5}$: choose
- hash(s) $=\mathrm{s}_{1}+\mathrm{s}_{2} 128+\mathrm{s}_{3} 128^{2}+\mathrm{s}_{4} 128^{3}+\ldots+\mathrm{s}_{\mathrm{n}} 128^{\mathrm{n}}$

Think of the string as a base 128 number.

- Problems:
- hash("really, really big") $=$ well... something really, really big
- hash("one thing") \% 128 = hash("other thing") \% 128

Universal Hashing

- For any fixed hash function, there will be some pathological sets of inputs
- everything hashes to the same cell!
- Solution: Universal Hashing
- Start with a large (parameterized) class of hash functions
- No sequence of inputs is bad for all of them!
- When your program starts up, pick one of the hash functions to use at random (for the entire time)
- Now: no bad inputs, only unlucky choices!
- If universal class large, odds of making a bad choice very low
- If you do find you are in trouble, just pick a different hash function and re-hash the previous inputs

"Random" Vector Universal Hash

- Parameterized by prime size and vector:
$\mathrm{a}=<\mathrm{a}_{0} \mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{r}}>$ where $0<=\mathrm{a}_{\mathrm{i}}<$ size
- Represent each key as $r+1$ integers where $k_{i}<$ size
- size $=11$, key $=39752==><3,9,7,5,2>$
- size $=29$, key = "hello world" ==> $<8,5,12,12,15,23,15,18,12,4>$
$\mathrm{h}_{\mathrm{a}}(\mathrm{k})=\left(\sum_{i=0}^{r} a_{i} k_{i}\right) \bmod$ size
dot product with a "random" vector

"Random" Vector Universal Hash

- Strengths:
- works on any type as long as you can form k_{i} 's
- if we're building a static table, we can try many a's
- a random a has guaranteed good properties no matter what we're hashing
- Weaknesses
- must choose prime table size larger than any k_{i}

Alternate Universal Hash Function

- Parameterized by k, a, and b:
- k * size should fit into an int
- a and b must be less than size
$\mathrm{h}_{\mathrm{k}, \mathrm{a}, \mathrm{b}}(\mathrm{X})=((a \cdot x+b) \bmod k \cdot \operatorname{size}) / k$

Alternate Universal Hash: Example

- Context: hash integers in a table of size 16

$$
\begin{aligned}
\text { let } \mathrm{k}=32, \mathrm{a} & =100, \mathrm{~b}=200 \\
\mathrm{~h}_{\mathrm{k}, \mathrm{a}, \mathrm{~b}}(1000) & =\left(\left(100^{*} 1000+200\right) \%\left(32^{*} 16\right)\right) / 32 \\
& =(100200 \% 512) / 32 \\
& =360 / 32 \\
& =11
\end{aligned}
$$

Alternate Universal Hash Function

- Strengths:
- if we're building a static table, we can try many parameter values
- random a,b has guaranteed good properties no matter what we're hashing
- can choose any size table
- very efficient if k and size are powers of 2
- Weaknesses
- still need to turn non-integer keys into integers

Hash Function Summary

- Goals of a hash function
- reproducible mapping from key to table entry
- evenly distribute keys across the table
- separate commonly occurring keys complete quickly
- Hash functions
$-h(n)=n \%$ size
- $h(n)=$ string as base 128 number \% size
- One Universal hash function: dot product with random vector
- Other Universal hash functions...

How to Design a Hash Function

- Know what your keys are
- Study how your keys are distributed
- Try to include all important information in a key in the construction of its hash
- Try to make "neighboring" keys hash to very different places
- Prune the features used to create the hash until it runs "fast enough" (very application dependent)

Collisions

- Pigeonhole principle says we can’t avoid all collisions
- try to hash without collision m keys into n slots with $m>n$
- try to put 6 pigeons into 5 holes
- What do we do when two keys hash to the same entry?
- open hashing: put little dictionaries in each entry
k shove extra pigeons in one hole!
- closed hashing: pick a next entry to try

Open Hashing or Hashing with Chaining

- Put a little dictionary at each entry
- choose type as appropriate
- common case is unordered linked list (chain)
- Properties
- λ can be greater than 1
- performance degrades with length of chains

Open Hashing Code

```
Dictionary & findBucket(const Key & k) {
    return table[hash(k) %table.size];
}
void insert (const Key & k, void delete(const Key & k)
            const Value & v)
{
    findBucket(k).delete(k);
    findBucket(k).insert(k,v);
}
Value & find(const Key & k)
{
    return findBucket(k).find(k);
}
```


Load Factor in Open Hashing

- Search cost
- unsuccessful search:
- successful search:
- Desired load factor:

Closed Hashing / Open Addressing

What if we only allow one Key at each entry?

- two objects that hash to the same spot can't both go there
- first one there gets the spot
- next one must go in another spot
- Properties
$-\lambda \leq 1$
- performance degrades with difficulty of finding right spot

Probing

- Probing how to:
- First probe - given a key k, hash to h(k)
- Second probe - if $h(k)$ is occupied, try $h(k)+f(1)$
- Third probe - if $h(k)+f(1)$ is occupied, try $h(k)+$ f(2)
- And so forth
- Probing properties
- we force $f(0)=0$
- the $\mathrm{i}^{\text {th }}$ probe is to $(\mathrm{h}(\mathrm{k})+\mathrm{f}(\mathrm{i}))$ mod size
- if i reaches size-1, the probe has failed
- depending on $f()$, the probe may fail sooner
- long sequences of probes are costly!

Linear Probing

- Probe sequence is
$-h(k)$ mod size
$-h(k)+1 \bmod$ size
$-h(k)+2$ mod size
- ...
- findEntry using linear probing:

```
bool findEntry(const Key & k, Entry *& entry) {
    int probePoint = hash (k);
    do {
        entry = &table[probePoint];
        probePoint = (probePoint + 1) % size;
    } while (!entry->isEmpty() && entry->key != k);
    return !entry->isEmpty();
}
```


Linear Probing Example

Load Factor in Linear Probing

- For any $\lambda<1$, linear probing will find an empty slot
- Search cost (for large table sizes)
- successful search: $\frac{1}{2}\left(1+\frac{1}{(1-\lambda)}\right)$
- unsuccessful search: $\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^{2}}\right)$
- Linear probing suffers from primary clustering
- Performance quickly degrades for $\lambda>1 / 2$

Quadratic Probing

- Probe sequence is
- h(k) mod size
- $(\mathrm{h}(\mathrm{k})+1)$ mod size
- $(\mathrm{h}(\mathrm{k})+4)$ mod size
- $(\mathrm{h}(\mathrm{k})+9)$ mod size
- ...
- findEntry using quadratic probing:

```
bool findEntry(const Key & k, Entry *& entry) {
        int probePoint = hash (k), numProbes = 0;
        do {
            entry = &table[probePoint];
            numProbes++;
            probePoint = (probePoint + 2*numProbes - 1) % size;
    } while (!entry->isEmpty() && entry->key != key);
    return !entry->isEmpty();
}
```


Quadratic Probing Example J

Quadratic Probing Example L

Quadratic Probing Succeeds (for $\lambda \leq 1 / 2)$

- If size is prime and $\lambda \leq 1 / 2$, then quadratic probing will find an empty slot in size/2 probes or fewer.
- show for all $0 \leq i, j \leq s i z e / 2$ and $i \neq j$
$\left(h(x)+i^{2}\right) \bmod$ size $\neq\left(h(x)+j^{2}\right) \bmod$ size
- by contradiction: suppose that for some i, j :
$\left(h(x)+i^{2}\right) \bmod$ size $=\left(h(x)+j^{2}\right) \bmod$ size
$i^{2} \bmod$ size $=j^{2} \bmod$ size
$\left(i^{2}-j^{2}\right) \bmod$ size $=0$
$[(i+j)(i-j)] \bmod$ size $=0$
- but how can $_{i}+j=0$ or $i+j=$ size when
i $\neq j$ and $i, j \leq s i z e / 2 ?$
- same for i - $j \bmod$ size $=0$

Quadratic Probing May Fail (for $\lambda>1 / 2$)

- For any i larger than size/2, there is some j smaller than i that adds with i to equal size (or a multiple of size). D'oh!

Load Factor in Quadratic Probing

- For any $\lambda \leq 1 / 2$, quadratic probing will find an empty slot; for greater λ, quadratic probing may find a slot
- Quadratic probing does not suffer from primary clustering
- Quadratic probing does suffer from secondary clustering
- How could we possibly solve this?

Double Hashing

- Probe sequence is
$-h_{1}(k) \bmod$ size
$\mathbf{f}(\mathbf{i})=\mathbf{i} \cdot$ hash $_{\mathbf{2}}(\mathbf{x})$
$-\left(h_{1}(k)+1 \cdot h_{2}(x)\right)$ mod size
$-\left(h_{1}(k)+2 \cdot h_{2}(x)\right)$ mod size
- ...
- Code for finding the next linear probe:

```
bool findEntry(const Key & k, Entry *& entry) {
    int probePoint = hash (k), hashIncr = hash_(k);
    do {
        entry = &table[probePoint];
        probePoint = (probePoint + hashIncr) % size;
        } while (!entry->isEmpty() && entry->key != k);
        return !entry->isEmpty();
}
```


A Good Double Hash Function...

...is quick to evaluate.
...differs from the original hash function.
...never evaluates to 0 (mod size).

One good choice is to choose prime R < size
and:

$$
\operatorname{hash}_{2}(x)=R-(x \bmod R)
$$

Double Hashing Example

insert(76) $\operatorname{insert}(93) \quad \operatorname{insert}(40) \quad \operatorname{insert}(47) \quad \operatorname{insert}(10) \quad \operatorname{insert}(55)$ $76 \% 7=6 \quad 93 \% 7=2 \quad 40 \% 7=5 \quad 47 \% 7=5 \quad 10 \% 7=3 \quad 55 \% 7=6$

probes: 1

1

1
$5-(47 \% 5)=3$

2
$5-(55 \% 5)=5$

2

Load Factor in Double Hashing

- For any $\lambda<1$, double hashing will find an empty slot (given appropriate table size and hash ${ }_{2}$)
- Search cost appears to approach optimal (random hash):
- successful search: $\frac{1}{\lambda} \ln \frac{1}{1-\lambda}$
- unsuccessful search: $\frac{1}{1-\lambda}$
- No primary clustering and no secondary clustering
- One extra hash calculation

Deletion in Closed Hashing

- Must use lazy deletion!
- On insertion, treat a deleted item as an empty slot

The Squished Pigeon Principle

- An insert using closed hashing cannot work with a load factor of 1 or more.
- An insert using closed hashing with quadratic probing may not work with a load factor of $1 / 2$ or more.
- Whether you use open or closed hashing, large load factors lead to poor performance!
- How can we relieve the pressure on the pigeons?

Hint: remember what happened when we overran a d-Heap's array!

Rehashing

- When the load factor gets "too large" (over a constant threshold on λ), rehash all the elements into a new, larger table:
- takes $\mathrm{O}(\mathrm{n})$, but amortized $\mathrm{O}(1)$ as long as we (just about) double table size on the resize
- spreads keys back out, may drastically improve performance
- gives us a chance to retune parameterized hash functions
- avoids failure for closed hashing techniques
- allows arbitrarily large tables starting from a small table
- clears out lazily deleted items

To Do

- Finish Project II
- Read chapter 5 in the book

Coming Up

- Extendible hashing (hashing for HUGE data sets)
- Disjoint-set union-find ADT
- Project II due (Wednesday)
- Project III Handout (Wednesday)
- Quiz (Thursday)

