
1

CSE 326: Data Structures
Lecture #12

Bart Niswonger
Summer Quarter 2001

Today’s Outline

• Unix Tutorial
– What do you want covered?

• Midterm
– Amortized time

– ADT vs Data Structure

•

2

Intermediate Unix Tutorial

• 2 minutes

• 3 things you love about unix
• 3 things you hate
• 5 things you wish you knew how to do

• 1 gift idea

Asymptotic Time

• Bounds worst-case running time
– Over m operations

• Worst-case for single operation may be
really bad, but worst-case for m
operations is bounded

3

ADT vs Data Structure

Abstract Data Type
– Abstract
– Operations &

semantics
– Data-less
– One
– No notion of running

time or complexity

Data structures
– Concrete implementation
– Set of algorithms

a
– Holds data
– Many
– Very particular running

times and complexities

• Dictionary operations
– create
– destroy
– insert
– find
– delete

• Stores values associated with user-specified
keys
– values may be any (homogenous) type
– keys may be any (homogenous) comparable type

Dictionary ADT
• kim chi

– spicy cabbage

• Krispy Kreme
– tasty doughnut

• kiwi
– Australian fruit

• kale
– leafy green

• Krispix
– breakfast cereal

insert

find(kiwi)

•kohlrabi
- upscale tuber

• kiwi
- Australian fruit

4

Hash Table Approach

But… is there a problem in this pipe-dream?

f(x)

Kiwi

Kim chi

Kale

Kohlrabi

Kumquat

Hash Table
Dictionary Data Structure

• Hash function: maps
keys to integers
– result: can quickly find

the right spot for a given
entry

• Unordered and sparse
table
– result: cannot efficiently

list all entries,
– Cannot find min and max

efficiently,
– Cannot find all items

within a specified range
efficiently.

f(x)
Kiwi

Kim chi
Kale

Kohlrabi

Kumquat

5

Hash Table Terminology
hash function

collision

keys
load factor

�
= # of entries in table

tableSize

f(x)Kim chi

Kale

Kohlrabi

Kumquat

Kiwi

table

Hash Table Code (First Pass)

Val ue & f i nd(Key & key) {
i nt i ndex = hash(key) % t abl eSi ze;
r et ur n Tabl e[i ndex] ;

}

What should the hash
function be? (for integers)

What should the table
size be?

How should we
resolve collisions?

6

A Good Hash Function…

…is easy (fast) to compute (O(1) and practically
fast).

…distributes the data evenly (hash(a) � hash(b))

…uses the whole hash table (for all 0 � k < size,
there’s an i such that hash(i) % size = k).

A Good Hash Function for Integers
• Choose

– tableSize is prime
– hash(n) = n % tableSize

• Example:
– tableSize = 7

insert(4)
insert(17)
find(12)
insert(9)
delete(17)

3

2

1

0

6

5

4

7

Good Hash Function for Strings?
• I want to be able to:

insert(“kale”)
insert(“Krispy Kreme”)
insert(“kim chi”)

Good Hash Function for Strings?
• Sum the ASCII values of the characters.
• Consider only the first 3 characters.

– Uses only 2871 out of 17,576 entries in the table on
English words.

• Let s = s1s2s3s4…s5: choose
– hash(s) = s1 + s2128 + s31282 + s41283 + … + sn128n

• Problems:
– hash(“really, really big”) = well… something really, really

big
– hash(“one thing”) % 128 = hash(“other thing”) % 128

Think of the string as a base 128 number.

8

Easy to Compute String Hash

• Use Horner’s Rule
i nt hash(St r i ng s) {

h = 0;
f or (i = s. l engt h() - 1; i >= 0; i - -) {

h = (s i + 128* h) % t abl eSi ze;
}
r et ur n h;

}

Universal Hashing
• For any fixed hash function, there will be

some pathological sets of inputs
– everything hashes to the same cell!

• Solution: Universal Hashing
– Start with a large (parameterized) class of hash

functions
• No sequence of inputs is bad for all of them!

– When your program starts up, pick one of the hash
functions to use at random (for the entire time)

– Now: no bad inputs, only unlucky choices!
• If universal class large, odds of making a bad choice very

low
• If you do find you are in trouble, just pick a different hash

function and re-hash the previous inputs

9

“Random” Vector Universal Hash

• Parameterized by prime size and vector:
a = <a0 a1 … ar> where 0 <= ai < size

• Represent each key as r + 1 integers where ki <
size
– size = 11, key = 39752 ==> <3,9,7,5,2>
– size = 29, key = “hello world” ==>

<8,5,12,12,15,23,15,18,12,4>

ha(k) = sizeka
r

i
ii mod

0

��
����

�
dot product with a “random” vector!

Universal Hash Function

• Strengths:
– works on any type as long as you can form ki’s
– if we’re building a static table, we can try many a’s
– a random a has guaranteed good properties no

matter what we’re hashing

• Weaknesses
– must choose prime table size larger than any ki

10

Hash Function Summary
• Goals of a hash function

– reproducible mapping from key to table entry
– evenly distribute keys across the table
– separate commonly occurring keys (neighboring

keys?)
– complete quickly

• Example Hash functions
– h(n) = n % size
– h(n) = string as base 128 number % size
– One Universal hash function: dot product with random

vector

How to Design a Hash Function

• Know what your keys are
• Study how your keys are distributed
• Try to include all important information in a

key in the construction of its hash
• Try to make “neighboring” keys hash to very

different places
• Prune the features used to create the hash

until it runs “fast enough” (very application
dependent)

11

Collisions

• Pigeonhole principle says we can’t avoid all
collisions
– try to hash without collision m keys into n slots with m > n
– try to put 6 pigeons into 5 holes

• What do we do when two keys hash to the same
entry?
– open hashing: put little dictionaries in each entry

– closed hashing: pick a next entry to try
shove extra pigeons in one hole!

To Do

• Project II
• Homework 4
• Read Chapter 5 (fast!)

12

Coming Up

• More hashing
• Cool stuff!
• Project III

