CSE 326: Data Structures

 Lecture \#11 Big, Bad B-TreesBart Niswonger
Summer Quarter 2001

Today's Outline

- Meeting times
- m-ary Trees
- B-Trees
-2-3 Trees
Announcements:
- Ashish's office hours Monday \& Tuesday 4-4:50pm
- Bart's office hours

Monday 12-1 pm \& open door

- 2-3-4 Trees

Meeting Times

- Monday
- 1:00pm to 1:30pm Ben \& Rob
- 1:30pm to 2:00pm Grace \& Margaux
- 2:00pm to 2:30pm Yukiyo
- 2:30pm to 3:00pm Rishi \& Eric
- 3:30pm to 4:00pm Chris
- 4:00pm to 4:30pm Justice
- Tuesday
- 12:00pm to 12:30pm Ryan
- 12:30pm to 1:00pm Takako
- Thursday
- 12:00pm to 12:30pm Renata \& Alex

m-ary Search Tree

- Maximum branching factor of m
- Complete tree has depth $=\log _{M} \mathbf{N}$
- Each internal node in a complete tree has
 m-1 keys
runtime:

m-ary Search Trees: why?

- Related to d-heaps

B-Trees

- B-Trees are specialized m-ary search trees
- Each node has many keys
- subtree between two keys x and y contains values v such that $x \leq v<$
- binary search within a node to find correct subtree
- Each node takes one full \{page, block, line\} of memory

B-Tree Properties ${ }^{\ddagger}$

- Properties
- maximum branching factor of M
- the root has between 2 and M children or at most L keys
- other internal nodes have between $\lceil M / 2\rceil$ and M children
- internal nodes contain only search keys (no data)
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between $\lceil L / 2\rceil$ and L keys
- all leaves are at the same depth
- Result
- tree is $\Theta(\log \mathrm{n})$ deep $\left(\sim \log _{\mathrm{M} 2} \mathrm{n}\right)$
- all operations run in $\Theta(\log n)$ time
- operations pull in about M or L items at a time

B-Tree Properties

- Properties
- maximum branching factor of M
- the root has between 2 and M children or at most L keys
- other internal nodes have between $\lceil M / 2\rceil$ and M children
- internal nodes contain only search keys (no data)
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between $\lceil L / 2\rceil$ and L keys
- all leaves are at the same depth
- Result
- tree is $\Theta(\log n)$ deep $\left(\sim \log _{M / 2} n\right)$
- all operations run in $\Theta(\log n)$ time
- operations pull in about M or L items at a time

B-Tree Properties

- Properties
- maximum branching factor of M
- the root has between 2 and M children or at most L keys
- other internal nodes have between $\lceil M / 2\rceil$ and M children
- internal nodes contain only search keys (no data)
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between $\lceil L / 2\rceil$ and L keys
- all leaves are at the same depth
- Result
- tree is $\Theta(\log n)$ deep $\left(\sim \log _{M / 2} n\right)$
- all operations run in $\Theta(\log n)$ time
- operations pull in about M or L items at a time

B-Tree Properties

- Properties
- maximum branching factor of M
- the root has between 2 and M children or at most L keys
- other internal nodes have between $\lceil M / 2\rceil$ and M children
- internal nodes contain only search keys (no data)
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between $\lceil L / 2\rceil$ and L keys
- all leaves are at the same depth
- Result
- tree is $\Theta(\log \mathrm{n})$ deep $\left(\sim \log _{\mathrm{w} 2} \mathrm{n}\right)$
- all operations run in $\Theta(\log n)$ time
- operations pull in about M or L items at a time

When Big-O is Not Enough

B-Tree is about $\log _{M 12} n /(L / 2)$ deep
$=\log _{M / 2} n-\log _{M / 2} L / 2$
$=\mathrm{O}\left(\log _{M 12} n\right)$
$=\mathrm{O}(\log n)$ per operation (same as BST!)
Where's the beef?!
$\log _{2}(10,000,000)=24$ disk accesses
$\log _{200 / 2}(10,000,000)<4$ disk accesses

B-Tree Nodes

- Internal node
- i search keys; i+1 subtrees; m - i - 1 inactive entries

- Leaf
- j data keys; \boldsymbol{L} - jinactive entries

Example

Making a B-Tree

Now, insert(1)?

Splitting the Root

Insertions and Split Ends

Propagating Splits

Insertion in Boring Text

- Insert the key in its leaf
- If the leaf ends up with L+1 items, overflow!
- Split the leaf into two nodes:
- original with $\lceil(L+1) / 2\rceil$ items
- new one with $\lfloor(L+1) / 2\rfloor$ items
- Add the new child to the parent
- If the parent ends up with $\mathbf{m + 1}$ items, overflow!
- If an internal node ends up with $\mathrm{M}+1$ items, overflow!
- Split the node into two nodes:
- original with $\lceil(M+1) / 2\rceil$ items
- new one with $\lfloor(M+1) / 2\rfloor$ items
- Add the new child to the parent
- If the parent ends up with $\mathbf{m + 1}$ items, overflow!
- Split an overflowed root in two and hang the new nodes under a new root

After More Routine Inserts

Deletion

Deletion and Adoption

Deletion with Propagation

And no neighbor with surplus!

Finishing the Propagation

A Bit More Adoption

Pulling out the Root

A node has too few subtrees and no neighbor with surplus!

But now the root has just one subtree!

Pulling out the Root (continued)

The root
has just one subtree!

But that's silly!

Deletion（in Two Boring Slides of Text）

－Remove the key from its leaf
－If the leaf ends up with fewer than 「 $L / 2\rceil$ items，underflow！
－Adopt data from a neighbor； update the parent
－If borrowing won＇t work，delete node and divide keys between neighbors

Why will dumping keys always work if borrowing doesn＇t？
－If the parent ends up with fewer than $\lceil\mathbf{M} / 2\rceil$ items，underflow！

Deletion（Slide Two）

－If a node ends up with fewer than 「м／2〕items， underflow！
－Adopt subtrees from a neighbor；update the parent
－If borrowing won＇t work， delete node and divide subtrees between neighbors
－If the parent ends up with fewer than $\lceil M / 2\rceil$ items， underflow！
－If the root ends up with only one child，make the child the new root of the tree

This reduces the height of the tree！

Thinking about B-Trees

- B-Tree insertion can cause (expensive) splitting and propagation
- B-Tree deletion can cause (cheap) borrowing or (expensive) deletion and propagation
- Propagation is rare if \boldsymbol{M} and \boldsymbol{L} are large (Why?)
- Repeated insertions and deletion can cause thrashing
- If $\boldsymbol{M}=\boldsymbol{L}=128$, then a B-Tree of height 4 will store at least 30,000,000 items
- Hard to implement!
- VERY common - the most common tree type?

A Tree with Any Other Name

FYI:

- B-Trees with $\boldsymbol{M}=3, \boldsymbol{L}=\mathbf{x}$ are called

2-3 trees

- B-Trees with $\boldsymbol{M}=\mathbf{4}, \quad \mathbf{L}=\mathbf{x}$ are called 2-3-4 trees

Why would we ever use these?

To Do

- Continue Project II
- Continue Homework 4
- Look forward to no quiz/homework for a week!
- (And prepare for the midterm)

Coming Up

- Midterm (Wednesday)
- Project II due (July 23 ${ }^{\text {rd }}$)
- Homework 4 due (July $23^{\text {rd }}$)

To Do

- Study for midterm!
- Read through section 4.7 in the book
- Comments \& Feedback
- Homework IV (studying)
- Project II - part B

Coming Up

- Midterm next Wednesday
- A Huge Search Tree Data Structure (not on the midterm)

