
1

CSE 326: Data Structures
Lecture #11

Big, Bad B-Trees

Bart Niswonger
Summer Quarter 2001

Today’s Outline

• Meeting times
• m-ary Trees

– B-Trees

– 2-3 Trees

– 2-3-4 Trees

• Ashish’s office hours
Monday & Tuesday 4 - 4:50pm

• Bart’s office hours
Monday 12 – 1 pm & open door

2

Meeting Times
• Monday

– 1:00pm to 1:30pm Ben & Rob
– 1:30pm to 2:00pm Grace & Margaux
– 2:00pm to 2:30pm Yukiyo
– 2:30pm to 3:00pm Rishi & Eric
– 3:30pm to 4:00pm Chris
– 4:00pm to 4:30pm Justice

• Tuesday
– 12:00pm to 12:30pm Ryan
– 12:30pm to 1:00pm Takako

• Thursday
– 12:00pm to 12:30pm Renata & Alex

m-ary Search Tree

• Maximum branching
factor of M

• Complete tree has
depth = l ogMN

• Each internal node in
a complete tree has
M - 1 keys

runtime:

3

m-ary Search Trees: why?

• Related to d-heaps

B-Trees
• B-Trees are specialized m-ary

search trees
• Each node has many keys

– subtree between two keys x and y
contains values v such that x

�
v < y

– binary search within a node
to find correct subtree

• Each node takes one
full {page, block, line}
of memory

3 7 12 21

x<3 3� x<7 7� x<12 12� x<21 21 � x

4

B-Tree Properties‡

• Properties
– maximum branching factor of M
– the root has between 2 and Mchildren or at most L keys

– other internal nodes have between
�
M/2� and M children

– internal nodes contain only search keys (no data)
– smallest datum between search keys x and y equals x

– each (non-root) leaf contains between
�
L/2� and L keys

– all leaves are at the same depth

• Result
– tree is � (log n) deep (~ logM/2n)
– all operations run in � (log n) time
– operations pull in about M or L items at a time

‡These are technically B+-Trees

B-Tree Properties
• Properties

– maximum branching factor of M
– the root has between 2 and M children or at most L keys

– other internal nodes have between
�� ��
M/2�� �� and M children

– internal nodes contain only search keys (no data)
– smallest datum between search keys x and y equals x
– each (non-root) leaf contains between

�
L/2� and L keys

– all leaves are at the same depth

• Result
– tree is � (log n) deep (~ logM/2n)
– all operations run in � (log n) time
– operations pull in about M or L items at a time

5

B-Tree Properties
• Properties

– maximum branching factor of M
– the root has between 2 and M children or at most L keys

– other internal nodes have between
�
M/2� and M children

– internal nodes contain only search keys (no data)
– smallest datum between search keys x and y equals x

– each (non-root) leaf contains between
�� ��
L/2�� �� and L keys

– all leaves are at the same depth

• Result
– tree is � (log n) deep (~ logM/2n)
– all operations run in � (log n) time
– operations pull in about M or L items at a time

B-Tree Properties
• Properties

– maximum branching factor of M
– the root has between 2 and M children or at most L keys

– other internal nodes have between
�
M/2� and M children

– internal nodes contain only search keys (no data)
– smallest datum between search keys x and y equals x

– each (non-root) leaf contains between
�
L/2� and L keys

– all leaves are at the same depth

• Result
– tree is �� �� (log n) deep (~ logM/2n)
– all operations run in �� �� (log n) time
– operations pull in about M or L items at a time

6

When Big-O is Not Enough

B-Tree is about logM/2 n/(L/2) deep

= logM/2 n - logM/2 L/2

= O(logM/2 n)

= O(log n) per operation (same as BST!)

Where’s the beef?!

log2(10,000,000) = 24 disk accesses

log200/2(10,000,000) < 4 disk accesses

…__ __k1 k2
… k i

B-Tree Nodes

• Internal node
– i search keys; i +1 subtrees; M - i - 1 inactive entries

• Leaf
– j data keys; L - j inactive entries

k1 k2
… k j

…__ __

1 2 M - 1

1 2 L

i

j

7

Example

B-Tree with M = 4

and L = 4

1 2

3 5 6 9

10 11 12

15 17

20 25 26

30 32 33 36

40 42

50 60 70

10 40

3 15 20 30 50

Making a B-Tree

The empty
B-Tree

M = 3 L = 2

3
insert(3)

3 14
insert(14)

Now, insert(1)?

8

Splitting the Root

and create
a new root

1 3 14

1 3 14

14

1 3 14
3 14

insert(1)

Too many
keys in a leaf!

So, split the leaf,

insert(59)

Insertions and Split Ends
14

1 3 14 59

14

1 3 14

insert(26)

14

1 3 14 26 59

14 26 59

14 59

1 3 14 26 59

and add a new child

Too many
keys in a leaf!

So, split the leaf,

9

Propagating Splits

1459

1 3 1426 59

1459

1 3 1426 595

1 3 5

insert(5)

5 14

1426 591 3 5

59

5 59 5

1 3 5 1426 59

59

14

Add a new leaf

and create a
new root

Too many keys
in an internal

node!

So, split the node,

Insertion in Boring Text

• Insert the key in its leaf
• If the leaf ends up with L+1

items, overflow!
– Split the leaf into two nodes:

• original with �� �� (L+1) / 2 �� �� items
• new one with �� �� (L+1) / 2 �� ��

items

– Add the new child to the parent
– If the parent ends up with M+1

items, overflow!

• If an internal node ends up
with M+1 items, overflow!
– Split the node into two nodes:

• original with �� �� (M+1) / 2 �� ��
items

• new one with �� �� (M+1) / 2 �� ��
items

– Add the new child to the
parent

– If the parent ends up with M+1
items, overflow!

• Split an overflowed root in
two and hang the new
nodes under a new rootThis makes the tree deeper!

10

After More Routine Inserts

5

1 3 5 1426 59

59

14

5

1 3 5 1426 5979

5989

14

89

insert(89)
insert(79)

Deletion

5

1 3 5 1426 5979

5989

14

89

5

1 3 5 1426 79

7989

14

89

delete(59)

11

Deletion and Adoption

5

1 3 5 1426 79

7989

14

89

delete(5)
?

1 3 1426 79

7989

14

89

3

1 3 3 1426 79

7989

14

89

A leaf has too few keys!

So, borrow
from a

neighbor

Deletion with Propagation

3

1 3 1426 79

7989

14

89

delete(3) ?

1 1426 79

7989

14

89

1 1426 79

7989

14

89

A leaf has too few keys!

And no neighbor with surplus!

So, delete
the leaf

But now a
node

has too few
subtrees!

12

Adopt a
neighbor

1 1426 79

7989

14

89

14

1 1426 79

89

79

89

Finishing the Propagation

delete(1)
(adopt a

neighbor)

14

1 1426 79

89

79

89

A Bit More Adoption

26

14 26 79

89

79

89

13

26

14 26 79

89

79

89

Pulling out the Root

14 79

89

79

89

A leaf has too few
keys!

And no neighbor with
surplus!

14 79

89

79

89

Delete the leaf

A node has too few subtrees
and no neighbor with surplus!

14 79

7989

89

Delete
the node

But now the root
has just one subtree!

delete(26)

Pulling out the Root (continued)

14 79

7989

89

The root
has just one subtree!

But that’s silly!

14 79

7989

89

Just make
the one child
the new root!

14

Deletion (in Two Boring Slides of Text)

• Remove the key from its leaf
• If the leaf ends up with fewer

than
�� ��
L/ 2 �� �� items, underflow!

– Adopt data from a neighbor;
update the parent

– If borrowing won’t work, delete
node and divide keys between
neighbors

– If the parent ends up with fewer
than �� �� M/ 2 �� �� items, underflow!

Why will dumping keys
always work if borrowing
doesn’t?

Deletion (Slide Two)

• If a node ends up with
fewer than

�� ��
M/ 2 �� �� items,

underflow!
– Adopt subtrees from a

neighbor; update the parent
– If borrowing won’t work,

delete node and divide
subtrees between neighbors

– If the parent ends up with
fewer than �� �� M/ 2 �� �� items,
underflow!

• If the root ends up with only
one child, make the child
the new root of the tree

This reduces the height of
the tree!

15

Thinking about B-Trees

• B-Tree insertion can cause (expensive) splitting
and propagation

• B-Tree deletion can cause (cheap) borrowing or
(expensive) deletion and propagation

• Propagation is rare if Mand L are large (Why?)

• Repeated insertions and deletion can cause
thrashing

• If M = L = 128, then a B-Tree of height 4 will
store at least 30,000,000 items

• Hard to implement!
• VERY common – the most common tree type?

A Tree with Any Other Name

FYI:
– B-Trees with M = 3, L = x are called

2-3 trees
– B-Trees with M = 4, L = x are called

2-3-4 trees

Why would we ever use these?

16

To Do

• Continue Project II
• Continue Homework 4
• Look forward to no quiz/homework for a

week!
• (And prepare for the midterm)

Coming Up

• Midterm (Wednesday)
• Project II due (July 23rd)
• Homework 4 due (July 23rd)

17

To Do

• Study for midterm!
• Read through section 4.7 in the book
• Comments & Feedback
• Homework IV (studying)
• Project II – part B

Coming Up

• Midterm next Wednesday
• A Huge Search Tree Data Structure

(not on the midterm)

