

B-Tree Properties[‡]

- Properties
 - maximum branching factor of M
 - the root has between 2 and *M* children or at most *L* keys
 - other internal nodes have between $\lceil M/2 \rceil$ and M children
 - internal nodes contain only search keys (no data)
 - smallest datum between search keys x and y equals x
 - each (non-root) leaf contains between $\lfloor L/2 \rfloor$ and L keys
 - all leaves are at the same depth
- Result
 - tree is $\Theta(\log n)$ deep (~ $\log_{M/2}n$)
 - all operations run in Θ(log n) time
 - operations pull in about M or L items at a time

[‡]These are technically B⁺-Trees

B-Tree Properties

Properties

- maximum branching factor of M
- the root has between 2 and M children or at most L keys
- other internal nodes have between $\lceil M/2 \rceil$ and M children
- internal nodes contain only search keys (no data)
- smallest datum between search keys x and y equals x
- each (non-root) leaf contains between $\lfloor L/2 \rfloor$ and L keys
- all leaves are at the same depth
- Result
 - tree is $\Theta(\log n)$ deep (~ $\log_{M/2}n)$
 - all operations run in $\Theta(\log n)$ time
 - operations pull in about M or L items at a time

B-Tree Properties

- Properties
 - maximum branching factor of M
 - the root has between 2 and M children or at most L keys
 - other internal nodes have between $\lceil M/2 \rceil$ and M children
 - internal nodes contain only search keys (no data)
 - smallest datum between search keys x and y equals x
 - each (non-root) leaf contains between $\lfloor L/2 \rfloor$ and L keys
 - all leaves are at the same depth
- Result
 - tree is $\Theta(\log n)$ deep (~ $\log_{M/2}n$)
 - all operations run in Θ(log n) time
 - operations pull in about *M* or *L* items at a time

log_{200/2}(10,000,000) < 4 disk accesses

Thinking about B-Trees

- B-Tree insertion can cause (expensive) splitting and propagation
- B-Tree deletion can cause (cheap) borrowing or (expensive) deletion and propagation
- Propagation is rare if *M* and *L* are large (*Why*?)
- Repeated insertions and deletion can cause thrashing
- If M = L = 128, then a B-Tree of height 4 will store at least 30,000,000 items
- Hard to implement!
- VERY common the most common tree type?

To Do

- Study for midterm!
- Read through section 4.7 in the book
- Comments & Feedback
- Homework IV (studying)
- Project II part B

Coming Up

- Midterm next Wednesday
- A **Huge** Search Tree Data Structure (not on the midterm)