CSE 326: Data Structures
Lecture #10
Amazingly Vexing Letters

Bart Niswonger
Summer Quarter 2001

Today’s Outline

e AVL Trees
— Deletion
— buildTree
— Thinking about AVL trees

e Splay Trees

Deletion (Really Easy Case)

Delete(17)

Deletion (Pretty Easy Case)

Delete(15)

Deletion (Pretty Easy Case cont.)

Delete(15)

Deletion (Hard Case #1)

Delete(12)

Single Rotation on Deletion

What is different about
deletion than insertion?

Deletion (Hard Case)

Delete(9)

Double Rotation on Deletion

Not finished!

Deletion with Propagation

What rotation do we apply? \

Propagated Single Rotation

4 4

N
LY

DHEB® OO
g4, %

60@

Propagated Double Rotation

AVL Deletion Algorithm

1.1f at node, delete
it
2. & herwi se recurse
to find it
3. Correct heights
a. |If inbal ance #1,
single rotate

b. If inbal ance #2
(or don’t care),

doubl e rotate

Search downward for

node, stacking

par ent nodes

Del et e node

Unw nd st ack,

correcting heights
[f inbal ance #1,
single rotate

I f inbal ance #2
(or don’t care)

doubl e rotate

Fun with AVL Trees

To Insert a sequence of n keys (unordered)

19 34 18 7

into initially empty AVL tree takes

> logi <> logn=0(nlogn)
i=1

i=1

If we then print using inorder traversal taking

O(n)
what do we get?

What can we improve?

Printing every node is O(n), nothing to do

What about building a tree?
— Can we do it in less than O(n log n)

 What if the input is sorted?
347 18 19

AVL buildTree

‘17 2013035/ 40

Divide & Conquer
— Divide the problem into parts
— Solve each part recursively

— Merge the parts into a
general solution

How long does
divide & conquer take?

BuildTree Example

5|1 8[10(15|17[20|30|35]|40

[5]8]1015) 2
19 35
5/8

BuildTree Analysis (approximate)

T(1) =1
T(n) = 2T(n/2) + 1

BuildTree Analysis (exact)

Precise Analysis: T(0) = b
T(n) = T(¢%) + T(7]) +c
By induction on n:
T(n) = (b+tc)n + b
Base case:
T(0) =Db = (b+c)0 + b
Induction step:

T(n) = (b+c) %] +/b|+ {HHHJﬂ_l

(b+c) %Y +/ b+ c [l 2112
= (b+c)n + b
QED: T(n) = (b+c)n + b = O(n)

Application: Batch Deletion

» Suppose we are using lazy deletion

* When there are lots of deleted nodes
(n/2), need to flush them all out
» Batch deletion:

— Print non-deleted nodes into an array
How?

— Divide & conquer AVL Treebuild
— Total time:

10

Thinking About AVL

» Observations
+ Worst case height of an AVL tree is about 1.44 log n
+ Insert, Find, Delete in worst case O(log n)

+ Only one (single or double) rotation needed on
insertion

- O(log n) rotations needed on deletion
+ Compatible with lazy deletion
- Height fields must be maintained (or 2-bit balance)

Alternatives to AVL Trees

« Change the balance criteria:

— Weight balanced trees
» keep about the same number of nodes in each subtree
* not nearly as nice

« Change the maintenance procedure:

— Splay trees
 “blind” adjusting version of AVL trees
— no height information maintained!
« insert/find always rotates node to the root!
* worst case time is O(n)
e amortized time for all operations is O(log n)

e mysterious, but often faster than AVL trees in practice
(better low-order terms)

11

Splay Trees

“blind” rebalancing

—no height or balance information stored

amortized time for all operations is O(log n)
worst case time is O(n)
insert/find always rotates node to the root!

— Good locality
* most common keys move high in tree

You're forced to make
areally deep access.

Since you' re down there anyway,
fix up alot of deep nodes!

12

Splay Operations: Find

Find(x)

1. do a normal BST search to find n such
that
n->key = x

2. move n to root by series of zig-zag and

zig-zig rotations, followed by a final zig if
necessary

Helped
Unchanged

13

14

Why Splaying Helps

Node n and its children are always helped (raised)
Except for final zig, nodes that are hurt by a zig-
zag or zig-zig are later helped by a rotation higher
up the tree!

Result:

— shallow (zig) nodes may increase depth by one or two
— helped nodes may decrease depth by a large amount

If a node n on the access path is at depth d before
the splay, it's at about depth d/2 after the splay

— Exceptions are the root, the child of the root, and the
node splayed

Locality

e Assume m > n access in a tree of size n
— Total amortized time O(m log n)
— O(log n) per access on average

» Gets better when you only access k
distinct items in the m accesses.
— Exercise.

15

Splaying Example

16

Almost There, Stay on Target

(® | @
Zig
(3) — (3)
2 2
4 4
Splay Again
@ | @
Zig-zag
(3) — (4)
Find(4)
2 3 G

17

Example Splayed Out

Splay Tree Summary

All operations are in amortized O(log n) time
Splaying can be done top-down; better
because:

— only one pass

— NO recursion or parent pointers necessary
Invented by Sleator and Tarjan (1985), now
widely used in place of AVL trees

Splay trees are very effective search trees

— relatively simple

— no extra fields required

— excellent locality properties: frequently accessed
keys are cheap to find

18

To Do

Study for midterm!

Read through section 4.7 in the book
Comments & Feedback

Homework IV (studying)

Project Il — part B

Coming Up

* Midterm next Wednesday

* A Huge Search Tree Data Structure
(not on the midterm)

19

