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CSE 326: Data Structures
Lecture #10

Amazingly Vexing Letters

Bart Niswonger
Summer Quarter 2001

Today’s Outline

• AVL Trees
– Deletion

– buildTree

– Thinking about AVL trees

• Splay Trees
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Deletion (Really Easy Case)
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Deletion (Pretty Easy Case cont.)
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Deletion (Hard Case #1)
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Single Rotation on Deletion
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What is different about 
deletion than insertion?

Deletion (Hard Case)
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Double Rotation on Deletion
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Deletion with Propagation

2052

173

10

30

12
0 220

1 3

4

33

15

13

1

0 0

1
11

0
18
0

What rotation do we apply?
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Propagated Single Rotation
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Propagated Double Rotation
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AVL Deletion Algorithm
Recursive

1. I f  at  node,  del et e 
i t

2. Ot her wi se r ecur se 
t o f i nd i t

3.  Cor r ect  hei ght s

a.  I f  i mbal ance #1,

si ngl e r ot at e

b.  I f  i mbal ance #2 
( or  don’ t  car e) ,
doubl e r ot at e

Iterative
1.  Sear ch downwar d f or

node,  st acki ng

par ent  nodes

2.  Del et e node

3.  Unwi nd st ack,

cor r ect i ng hei ght s

a.  I f  i mbal ance #1,

si ngl e r ot at e 

b.  I f  i mbal ance #2 
( or  don’ t  car e)

doubl e r ot at e

Fun with AVL Trees
To Insert a sequence of n keys (unordered)

19  3  4  18  7

into initially empty AVL tree takes

If we then print using inorder traversal taking

O(n)

what do we get?

1 1

( lol g )og log
n n

i i

O n ni n
� �

� �
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What can we improve?

Printing every node is O(n), nothing to do
What about building a tree?

– Can we do it in less than O(n log n)

• What if the input is sorted?
3  4  7  18  19

If it is sorted, why bother?
We’ll see in a moment!

AVL buildTree
8 10 15 20 30 35 405

17

17

8 10155 20303540

Divide & Conquer
– Divide the problem into parts
– Solve each part recursively
– Merge the parts into a 

general solution

How long does 
divide & conquer take?
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BuildTree Example
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BuildTree Analysis (Approximate)

T( 1)  = 1

T( n)  = 2T( n/ 2)  + 1
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BuildTree Analysis (Exact)

Precise Analysis: T( 0)   = b

T( n)   = T(    )  + T(    )  + c

By induction on n:  
T( n)   = ( b+c) n + b

Base case:  
T( 0)   = b  = ( b+c) 0 + b

Induction step:
T( n)   = ( b+c)     + b + 

( b+c)     + b + c

= ( b+c) n + b

QED:  T( n)  = ( b+c) n + b = 
�� ��

( n)
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Application: Batch Deletion

• Suppose we are using lazy deletion
• When there are lots of deleted nodes 

(n/2), need to flush them all out
• Batch deletion:

– Print non-deleted nodes into an array
How?

– Divide & conquer AVL Treebuild
– Total time:

Why we cared!
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Thinking About AVL

• Observations
+ Worst case height of an AVL tree is about 1.44 log n
+ Insert, Find, Delete in worst case O(log n)
+ Only one (single or double) rotation needed on 

insertion
- O(log n) rotations needed on deletion
+ Compatible with lazy deletion
- Height fields must be maintained (or 2-bit balance)

Alternatives to AVL Trees
• Change the balance criteria:

– Weight balanced trees
• keep about the same number of nodes in each subtree
• not nearly as nice

• Change the maintenance procedure:
– Splay trees

• “blind” adjusting version of AVL trees
– no height information maintained! 

• insert/find always rotates node to the root!
• worst case time is O(n)
• amortized time for all operations is O(log n)
• mysterious, but often faster than AVL trees in practice 

(better low-order terms)
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Splay Trees
• “blind” rebalancing

– no height or balance information stored

• amortized time for all operations is O(log n)
• worst case time is O(n)
• insert/find always rotates node to the root!

– Good locality
• most common keys move high in tree

Idea

17

10

92

5

3

You’re forced to make 
a really deep access:

Since you’re down there anyway,
fix up a lot of deep nodes!
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Splay Operations: Find

• Find(x)
1. do a normal BST search to find n such 

that
n->key = x

2. move n to root by series of zig-zag and 
zig-zig rotations, followed by a final zig if 
necessary

Zig-Zag*
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n

Z
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*This is just a double rotation
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Zig-Zig
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Why Splaying Helps
• Node n and its children are always helped (raised)
• Except for final zig, nodes that are hurt by a zig-

zag or zig-zig are later helped by a rotation higher 
up the tree!

• Result: 
– shallow (zig) nodes may increase depth by one or two
– helped nodes may decrease depth by a large amount

• If a node n on the access path is at depth d before 
the splay, it’s at about depth d/2 after the splay
– Exceptions are the root, the child of the root, and the 

node splayed

Locality

• Assume m � n access in a tree of size n
– Total amortized time O(m log n)

– O(log n) per access on average

• Gets better when you only access k
distinct items in the m accesses.
– Exercise.
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Splaying Example
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Almost There, Stay on Target

zig

1

6

3

2 5

4

6

1

3

2 5

4

Splay Again

Find(4)

zig-zag

6

1

3

2 5

4

6

1

4

3 5

2



18

Example Splayed Out
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Splay Tree Summary
• All operations are in amortized O(log n) time
• Splaying can be done top-down; better 

because:
– only one pass
– no recursion or parent pointers necessary

• Invented by Sleator and Tarjan (1985), now 
widely used in place of AVL trees

• Splay trees are very effective search trees
– relatively simple
– no extra fields required
– excellent locality properties: frequently accessed 

keys are cheap to find
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To Do

• Study for midterm!
• Read through section 4.7 in the book
• Comments & Feedback
• Homework IV (studying)
• Project II – part B

Coming Up

• Midterm next Wednesday
• A Huge Search Tree Data Structure 

(not on the midterm)


