
1

CSE 326: Data Structures
Lecture #10

Amazingly Vexing Letters

Bart Niswonger
Summer Quarter 2001

Today’s Outline

• AVL Trees
– Deletion

– buildTree

– Thinking about AVL trees

• Splay Trees

2

Deletion (Really Easy Case)

2092

155

10

30173

12
1

0

100

2 2

3

00

Delete(17)

Deletion (Pretty Easy Case)

2092

155

10

30173

12
1

0

100

2 2

3

00

Delete(15)

3

Deletion (Pretty Easy Case cont.)

2092

175

10

303

12
1 100

2 2

3

00

Delete(15)

Deletion (Hard Case #1)

2092

175

10

303

12
1 100

2 2

3

00

Delete(12)

4

Single Rotation on Deletion

2092

175

10

303

1 10

2 2

3

00

3092

205

10

17

3

1 00

2 1

3

0

0

What is different about
deletion than insertion?

Deletion (Hard Case)

Delete(9)

2092

175

10

303

12
1 220

2 3

4

0

33

15

13
0 0

1

0

20

30

12

33

15

13

1

0 0

11
0

18
0

5

Double Rotation on Deletion

2

3

0

202

175

10

30

12
1 22

2 3

4

33

15

13

1

0 0

1
11

0
18
0

2052

173

10

30

12
0 220

1 3

4

33

15

13

1

0 0

1
11

0
18
00

���������
	��
�
�������

Deletion with Propagation

2052

173

10

30

12
0 220

1 3

4

33

15

13

1

0 0

1
11

0
18
0

What rotation do we apply?

6

Propagated Single Rotation

0

30

20

17

33

12

15

13

1

0

52

3

10

4

3 2

1 2 1

0 0 0
11

0

2052

173

10

30

12
0 220

1 3

4

33

15

13

1

0

1
11

0
18
0

18
0

Propagated Double Rotation

0

17

12

11

52

3

10

4

2 3

1 0

0 0

2052

173

10

30

12
0 220

1 3

4

33

15

13

1

0

1
11

0
18
0

15
1

0

20

30

33

1
18
0

13
0

2

7

AVL Deletion Algorithm
Recursive

1. I f at node, del et e
i t

2. Ot her wi se r ecur se
t o f i nd i t

3. Cor r ect hei ght s

a. I f i mbal ance #1,

si ngl e r ot at e

b. I f i mbal ance #2
(or don’ t car e) ,
doubl e r ot at e

Iterative
1. Sear ch downwar d f or

node, st acki ng

par ent nodes

2. Del et e node

3. Unwi nd st ack,

cor r ect i ng hei ght s

a. I f i mbal ance #1,

si ngl e r ot at e

b. I f i mbal ance #2
(or don’ t car e)

doubl e r ot at e

Fun with AVL Trees
To Insert a sequence of n keys (unordered)

19 3 4 18 7

into initially empty AVL tree takes

If we then print using inorder traversal taking

O(n)

what do we get?

1 1

(lol g)og log
n n

i i

O n ni n
� �

� �

8

What can we improve?

Printing every node is O(n), nothing to do
What about building a tree?

– Can we do it in less than O(n log n)

• What if the input is sorted?
3 4 7 18 19

If it is sorted, why bother?
We’ll see in a moment!

AVL buildTree
8 10 15 20 30 35 405

17

17

8 10155 20303540

Divide & Conquer
– Divide the problem into parts
– Solve each part recursively
– Merge the parts into a

general solution

How long does
divide & conquer take?

9

BuildTree Example

35

17

15

5

8

10

3

2 2

1 0

0

30
1

40

20
0

0

8 10 15 20 30 35 405 17

8 10 155

85

30 35 4020

3020

BuildTree Analysis (Approximate)

T(1) = 1

T(n) = 2T(n/ 2) + 1

10

��
������

2
1n ��

������
2

1n

��
	

���

2

1n

�

�
�
��

2

1n

BuildTree Analysis (Exact)

Precise Analysis: T(0) = b

T(n) = T() + T() + c

By induction on n:
T(n) = (b+c) n + b

Base case:
T(0) = b = (b+c) 0 + b

Induction step:
T(n) = (b+c) + b +

(b+c) + b + c

= (b+c) n + b

QED: T(n) = (b+c) n + b =
�� ��

(n)

1
2

1
2

1 ����
�

��
� ����

�
��
� �

n
nn

Application: Batch Deletion

• Suppose we are using lazy deletion
• When there are lots of deleted nodes

(n/2), need to flush them all out
• Batch deletion:

– Print non-deleted nodes into an array
How?

– Divide & conquer AVL Treebuild
– Total time:

Why we cared!

11

Thinking About AVL

• Observations
+ Worst case height of an AVL tree is about 1.44 log n
+ Insert, Find, Delete in worst case O(log n)
+ Only one (single or double) rotation needed on

insertion
- O(log n) rotations needed on deletion
+ Compatible with lazy deletion
- Height fields must be maintained (or 2-bit balance)

Alternatives to AVL Trees
• Change the balance criteria:

– Weight balanced trees
• keep about the same number of nodes in each subtree
• not nearly as nice

• Change the maintenance procedure:
– Splay trees

• “blind” adjusting version of AVL trees
– no height information maintained!

• insert/find always rotates node to the root!
• worst case time is O(n)
• amortized time for all operations is O(log n)
• mysterious, but often faster than AVL trees in practice

(better low-order terms)

12

Splay Trees
• “blind” rebalancing

– no height or balance information stored

• amortized time for all operations is O(log n)
• worst case time is O(n)
• insert/find always rotates node to the root!

– Good locality
• most common keys move high in tree

Idea

17

10

92

5

3

You’re forced to make
a really deep access:

Since you’re down there anyway,
fix up a lot of deep nodes!

13

Splay Operations: Find

• Find(x)
1. do a normal BST search to find n such

that
n->key = x

2. move n to root by series of zig-zag and
zig-zig rotations, followed by a final zig if
necessary

Zig-Zag*

g

X
p

Y

n

Z

W

*This is just a double rotation

n

Y

g

W

p

ZX

Helped

Unchanged

Hurt

14

Zig-Zig

n

Z

Y

p

X

g

W

g

W

X

p

Y

n

Z

Zig

p

X

n

Y

Z

n

Z

p

Y

X

root root

15

Why Splaying Helps
• Node n and its children are always helped (raised)
• Except for final zig, nodes that are hurt by a zig-

zag or zig-zig are later helped by a rotation higher
up the tree!

• Result:
– shallow (zig) nodes may increase depth by one or two
– helped nodes may decrease depth by a large amount

• If a node n on the access path is at depth d before
the splay, it’s at about depth d/2 after the splay
– Exceptions are the root, the child of the root, and the

node splayed

Locality

• Assume m � n access in a tree of size n
– Total amortized time O(m log n)

– O(log n) per access on average

• Gets better when you only access k
distinct items in the m accesses.
– Exercise.

16

Splaying Example

2

1

3

4

5

6

Find(6)

2

1

3

6

5

4

zig-zig

Still Splaying 6

zig-zig
2

1

3

6

5

4

1

6

3

2 5

4

17

Almost There, Stay on Target

zig

1

6

3

2 5

4

6

1

3

2 5

4

Splay Again

Find(4)

zig-zag

6

1

3

2 5

4

6

1

4

3 5

2

18

Example Splayed Out

zig-zag

6

1

4

3 5

2

61

4

3 5

2

Splay Tree Summary
• All operations are in amortized O(log n) time
• Splaying can be done top-down; better

because:
– only one pass
– no recursion or parent pointers necessary

• Invented by Sleator and Tarjan (1985), now
widely used in place of AVL trees

• Splay trees are very effective search trees
– relatively simple
– no extra fields required
– excellent locality properties: frequently accessed

keys are cheap to find

19

To Do

• Study for midterm!
• Read through section 4.7 in the book
• Comments & Feedback
• Homework IV (studying)
• Project II – part B

Coming Up

• Midterm next Wednesday
• A Huge Search Tree Data Structure

(not on the midterm)

