CSE 326: Data Structures
Lecture #0
Introduction

Bart Niswonger
Summer Quarter 2001

Come up and say hello!




Today’s Outline

Administrative Cruft
Overview of the Course
Queues

Stacks

Project #1

Course Information

Instructor: Bart Niswonger
226D Sieg Hall
bart@cs.washington.edu

Office hours: M 11:50-12:50, W 1:50-2:50 &
whenever door is open

TA:
Ashish Sabharwal ashish@cs
Office hours: Tues 10:50-11:50 in 226A/B

Text: Data Structures & Algorithm Analysis in
C++, 2nd edition, by Mark Allen Weiss




Tutorials

e Unix |

— Tuesday, June 19t

— 10:50-11:50 + lab time, Sieg 322
» Templates

— Thursday, June 215t

— 10:50-11:50 + lab time, GUG 410

« In place of section

» Unix Development

— Tuesday, June 26t

— 10:50-11:50 + lab time, Sieg 322

REQUIRED

Course Policies

* Roughly weekly written homework due at the

start of class on the due date

» Projects (4 total) due by 10PM on the due

date
— you have 4 late days for projects
» Grading
— homework: 15%
— projects: 25%
— midterm: 20% PARTICIPATION!
— final: 30%

— best of these: 10%




Course Mechanics

326 Web page:
www/education/courses/326/01su

326 course directory: /cse/courses/cse326
326 mailing list: cse326@cs.washington.edu

— subscribe to the mailing list using majordomo, see
homepage

Course labs are 232 and 329 Sieg Hall
— lab has NT machines w/X servers to access UNIX

All programming projects graded on
UNIX/g++

Goals of the Course

Become familiar with some of the fundamental
data structures in computer science

Improve ability to solve problems abstractly

— data structures are the building blocks

Improve ability to analyze your algorithms

— prove correctness

— gauge (and improve) time complexity

Become modestly skilled with the UNIX

operating system and X-windows (you'll need this in
upcoming courses)




Observation

 All programs manipulate data

— programs process, store, display, gather

— data can be information, numbers, images, sound
« Each program must decide how to store data

» Choice influences program at every level
— execution speed
— memory requirements
— maintenance (debugging, extending, etc.)

What is a Data Structure?

data structure -




What is an Abstract Data Type?

Abstract Data Type (ADT) -

1) An opportunity for an acronym

2) Mathematical description of an object
and the set of operations on the object

Data Structures : Algorithms

 Algorithm

— A high level, language independent
description of a step-by-step process for
solving a problem

e Data Structure

— A set of algorithms which implement an
ADT




Why so many data structures?

Ideal data structure: Dictionary ADT

fast, elegant, memory _ list

efficient

— binary search tree

Generates tensions: - AVl tree

— time vs. space — Splay tree

- gleerf%rnngznce vs. — Red-Black tree

9 — hash table

— generality vs. simplicity

— one operation’s
performance vs.
another’s

Code Implementation

* Theoretically
— abstract base class describes ADT

— inherited implementations implement data
structures

— can change data structures transparently (to client
code)

* Practice

— different implementations sometimes suggest
different interfaces (generality vs. simplicity)

— performance of a data structure may influence
form of client code (time vs. space, one operation
vs. another)




ADT Presentation Algorithm

Present an ADT
Motivate with some applications

Repeat until browned entirely through
— develop a data structure for the ADT
— analyze its properties

- efficiency

e correctness

* limitations

 ease of programming
Contrast data structure’s strengths and
weaknesses

— understand when to use each one

Queue ADT
Queue operations
— Create
— destroy

_enqueuve G TWEE, pEpcp [deee, ]

— dequeue
— is_empty
Queue property: if x is enQed before y is
enQed, then x will be deQed before y is
deQed

FIFO: First In First Out




Applications of the Q

Hold jobs for a printer

Store packets on network routers
Hold memory “freelists”

Make waitlists fair

Breadth first search

Circular Array Q Data Structure

Q

0 size-1
LL LT T L] [bfelaleff[ [ [ [ [ ]1]]
) )
front back
voi d enqueue( Ghj ect x) { WhenistheQempty?
Q back] = x
back = (back + 1) %size Are there error situations this

}

code will not catch?

Cbj ect dequeue() {

}

x = dfront] What are some limitations of

front = (front + 1) %si ze this structure?
return x '

Thisis pseudocode. Do not correct my semicolons.




Q Example

enqueue R
enqueue O
dequeue
enqueue T
enqueue A
enqueue T
dequeue
dequeue
enqueue E
dequeue

Linked List Q Data Structure

|?|—|—>ICI—|—'|d|—|—>|e|—|—>|;I\I

front

back

voi d enqueue( Ghj ect x) { oj ect dequeue() {

if (is_enpty())
front = back = new Node(x)
el se
back->next = new Node(x)
back = back->next

assert(!is_enpty)
return_data = front->data

temp = front
front = front->next
delete tenp

return tenp->data
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Circular Array vs. Linked List

LIFO Stack ADT

» Stack operations
— Create
— destroy
— push
— pop
— top
— is_empty

A

mMmMmoO®

/’EDCBA

F

» Stack property: if x is on the stack before y is
pushed, then x will be popped aftery is

popped

LIFO: Last In First Out
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Stacks in Practice

Function call stack

Removing recursion

Balancing symbols (parentheses)
Evaluating Reverse Polish Notation
Depth first search

Array Stack Data Structure

S

0 sze-1
flefdfefol [ [ [ [ [T [T TT[[]
T
back
voi d push(Qoj ect x) { Qbj ect pop() {
assert(lis_full()) back- -
§[ back] = x return S[back]
back++
) }
Cbj ect top() { .
assert(!is_enpty()) bool tl s_futljl(k) _{_ .
return S[back - 1] return back == size

}

}
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Linked List Stack Data Structure

|?|—|—>ICI—|—'|d|—|—>|e|—|—>|fl\I

back
voi d push(nj ect x) { Cbj ect pop() {
tenp = back assert(!is_enpty())
back = new Node(x) return_data = back->data
back->next = tenp tenp = back
} back = back->next
Cbj ect top() { return return_data
assert(!is_enpty()) }

}

return back->data

Data structures you should
already know

Arrays
Linked lists
Trees
Queues
Stacks
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To Do

Sign up on the cse326 mailing list
Check out the web page

Log on to a PC in the course labs and
access an instructional UNIX server

Read Chapters 1 and 3 in the book

Coming Up

Unix Tutorial
— Tuesday (tomorrow) 10:50, Sieg 322

Multi-Lists

Priority Queues and Heaps
Templates Tutorial

First homework
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