CSE 326: Data Structures
Lecture #0
Introduction

Bart Niswonger
Summer Quarter 2001

Come up and say hello!

Today’s Outline

Administrative Cruft
Overview of the Course
Queues

Stacks

Project #1

Course Information

Instructor: Bart Niswonger
226D Sieg Hall
bart@cs.washington.edu

Office hours: M 11:50-12:50, W 1:50-2:50 &
whenever door is open

TA:
Ashish Sabharwal ashish@cs
Office hours: Tues 10:50-11:50 in 226A/B

Text: Data Structures & Algorithm Analysis in
C++, 2nd edition, by Mark Allen Weiss

Tutorials

e Unix |

— Tuesday, June 19t

— 10:50-11:50 + lab time, Sieg 322
» Templates

— Thursday, June 215t

— 10:50-11:50 + lab time, GUG 410

« In place of section

» Unix Development

— Tuesday, June 26t

— 10:50-11:50 + lab time, Sieg 322

REQUIRED

Course Policies

* Roughly weekly written homework due at the

start of class on the due date

» Projects (4 total) due by 10PM on the due

date
— you have 4 late days for projects
» Grading
— homework: 15%
— projects: 25%
— midterm: 20% PARTICIPATION!
— final: 30%

— best of these: 10%

Course Mechanics

326 Web page:
www/education/courses/326/01su

326 course directory: /cse/courses/cse326
326 mailing list: cse326@cs.washington.edu

— subscribe to the mailing list using majordomo, see
homepage

Course labs are 232 and 329 Sieg Hall
— lab has NT machines w/X servers to access UNIX

All programming projects graded on
UNIX/g++

Goals of the Course

Become familiar with some of the fundamental
data structures in computer science

Improve ability to solve problems abstractly

— data structures are the building blocks

Improve ability to analyze your algorithms

— prove correctness

— gauge (and improve) time complexity

Become modestly skilled with the UNIX

operating system and X-windows (you'll need this in
upcoming courses)

Observation

 All programs manipulate data

— programs process, store, display, gather

— data can be information, numbers, images, sound
« Each program must decide how to store data

» Choice influences program at every level
— execution speed
— memory requirements
— maintenance (debugging, extending, etc.)

What is a Data Structure?

data structure -

What is an Abstract Data Type?

Abstract Data Type (ADT) -

1) An opportunity for an acronym

2) Mathematical description of an object
and the set of operations on the object

Data Structures : Algorithms

 Algorithm

— A high level, language independent
description of a step-by-step process for
solving a problem

e Data Structure

— A set of algorithms which implement an
ADT

Why so many data structures?

Ideal data structure: Dictionary ADT

fast, elegant, memory _ list

efficient

— binary search tree

Generates tensions: - AVl tree

— time vs. space — Splay tree

- gleerf%rnngznce vs. — Red-Black tree

9 — hash table

— generality vs. simplicity

— one operation’s
performance vs.
another’s

Code Implementation

* Theoretically
— abstract base class describes ADT

— inherited implementations implement data
structures

— can change data structures transparently (to client
code)

* Practice

— different implementations sometimes suggest
different interfaces (generality vs. simplicity)

— performance of a data structure may influence
form of client code (time vs. space, one operation
vs. another)

ADT Presentation Algorithm

Present an ADT
Motivate with some applications

Repeat until browned entirely through
— develop a data structure for the ADT
— analyze its properties

- efficiency

e correctness

* limitations

 ease of programming
Contrast data structure’s strengths and
weaknesses

— understand when to use each one

Queue ADT
Queue operations
— Create
— destroy

_enqueuve G TWEE, pEpcp [deee,]

— dequeue
— is_empty
Queue property: if x is enQed before y is
enQed, then x will be deQed before y is
deQed

FIFO: First In First Out

Applications of the Q

Hold jobs for a printer

Store packets on network routers
Hold memory “freelists”

Make waitlists fair

Breadth first search

Circular Array Q Data Structure

Q

0 size-1
LL LT T L] [bfelaleff[[[[[]1]]
))
front back
voi d enqueue(Ghj ect x) { WhenistheQempty?
Q back] = x
back = (back + 1) %size Are there error situations this

}

code will not catch?

Cbj ect dequeue() {

}

x = dfront] What are some limitations of

front = (front + 1) %si ze this structure?
return x '

Thisis pseudocode. Do not correct my semicolons.

Q Example

enqueue R
enqueue O
dequeue
enqueue T
enqueue A
enqueue T
dequeue
dequeue
enqueue E
dequeue

Linked List Q Data Structure

|?|—|—>ICI—|—'|d|—|—>|e|—|—>|;I\I

front

back

voi d enqueue(Ghj ect x) { oj ect dequeue() {

if (is_enpty())
front = back = new Node(x)
el se
back->next = new Node(x)
back = back->next

assert(!is_enpty)
return_data = front->data

temp = front
front = front->next
delete tenp

return tenp->data

10

Circular Array vs. Linked List

LIFO Stack ADT

» Stack operations
— Create
— destroy
— push
— pop
— top
— is_empty

A

mMmMmoO®

/’EDCBA

F

» Stack property: if x is on the stack before y is
pushed, then x will be popped aftery is

popped

LIFO: Last In First Out

11

Stacks in Practice

Function call stack

Removing recursion

Balancing symbols (parentheses)
Evaluating Reverse Polish Notation
Depth first search

Array Stack Data Structure

S

0 sze-1
flefdfefol [[[[[T [T TT[[]
T
back
voi d push(Qoj ect x) { Qbj ect pop() {
assert(lis_full()) back- -
§[back] = x return S[back]
back++
) }
Cbj ect top() { .
assert(!is_enpty()) bool tl s_futljl(k) _{_ .
return S[back - 1] return back == size

}

}

12

Linked List Stack Data Structure

|?|—|—>ICI—|—'|d|—|—>|e|—|—>|fl\I

back
voi d push(nj ect x) { Cbj ect pop() {
tenp = back assert(!is_enpty())
back = new Node(x) return_data = back->data
back->next = tenp tenp = back
} back = back->next
Cbj ect top() { return return_data
assert(!is_enpty()) }

}

return back->data

Data structures you should
already know

Arrays
Linked lists
Trees
Queues
Stacks

13

To Do

Sign up on the cse326 mailing list
Check out the web page

Log on to a PC in the course labs and
access an instructional UNIX server

Read Chapters 1 and 3 in the book

Coming Up

Unix Tutorial
— Tuesday (tomorrow) 10:50, Sieg 322

Multi-Lists

Priority Queues and Heaps
Templates Tutorial

First homework

14

