
1

CSE 326: Data Structures
Lecture #0
Introduction

Bart Niswonger
Summer Quarter 2001

Come up and say hello!

2

Today’s Outline

• Administrative Cruft
• Overview of the Course
• Queues
• Stacks
• Project #1

Course Information

• Instructor: Bart Niswonger
226D Sieg Hall
bart@cs.washington.edu
Office hours: M 11:50-12:50, W 1:50-2:50 &

whenever door is open

• TA:
Ashish Sabharwal ashish@cs
Office hours: Tues 10:50-11:50 in 226A/B

• Text: Data Structures & Algorithm Analysis in
C++, 2nd edition, by Mark Allen Weiss

3

Tutorials

• Unix I
– Tuesday, June 19th

– 10:50-11:50 + lab time, Sieg 322

• Templates
– Thursday, June 21st

– 10:50-11:50 + lab time, GUG 410
• In place of section

• Unix Development
– Tuesday, June 26th

– 10:50-11:50 + lab time, Sieg 322

REQUIRED

• Roughly weekly written homework due at the
start of class on the due date

• Projects (4 total) due by 10PM on the due
date
– you have 4 late days for projects

• Grading
– homework: 15%
– projects: 25%
– midterm: 20%
– final: 30%
– best of these: 10%

Course Policies

PARTICIPATION!

4

Course Mechanics

• 326 Web page:
www/education/courses/326/01su

• 326 course directory: /cse/courses/cse326
• 326 mailing list: cse326@cs.washington.edu

– subscribe to the mailing list using majordomo, see
homepage

• Course labs are 232 and 329 Sieg Hall
– lab has NT machines w/X servers to access UNIX

• All programming projects graded on
UNIX/g++

Goals of the Course

• Become familiar with some of the fundamental
data structures in computer science

• Improve ability to solve problems abstractly
– data structures are the building blocks

• Improve ability to analyze your algorithms
– prove correctness
– gauge (and improve) time complexity

• Become modestly skilled with the UNIX
operating system and X-windows (you’ll need this in
upcoming courses)

5

Observation

• All programs manipulate data
– programs process, store, display, gather
– data can be information, numbers, images, sound

• Each program must decide how to store data

• Choice influences program at every level
– execution speed
– memory requirements
– maintenance (debugging, extending, etc.)

What is a Data Structure?

data structure -

6

What is an Abstract Data Type?

Abstract Data Type (ADT) -

1) An opportunity for an acronym

2) Mathematical description of an object
and the set of operations on the object

Data Structures : Algorithms

• Algorithm
– A high level, language independent

description of a step-by-step process for
solving a problem

• Data Structure
– A set of algorithms which implement an

ADT

7

Why so many data structures?

Ideal data structure:
fast, elegant, memory
efficient

Generates tensions:
– time vs. space
– performance vs.

elegance
– generality vs. simplicity
– one operation’s

performance vs.
another’s

Dictionary ADT
– list
– binary search tree
– AVL tree
– Splay tree
– Red-Black tree
– hash table

Code Implementation

• Theoretically
– abstract base class describes ADT
– inherited implementations implement data

structures
– can change data structures transparently (to client

code)

• Practice
– different implementations sometimes suggest

different interfaces (generality vs. simplicity)
– performance of a data structure may influence

form of client code (time vs. space, one operation
vs. another)

8

ADT Presentation Algorithm

• Present an ADT
• Motivate with some applications
• Repeat until browned entirely through

– develop a data structure for the ADT
– analyze its properties

• efficiency
• correctness
• limitations
• ease of programming

• Contrast data structure’s strengths and
weaknesses
– understand when to use each one

Queue ADT

• Queue operations
– create
– destroy
– enqueue
– dequeue
– is_empty

• Queue property: if x is enQed before y is
enQed, then x will be deQed before y is
deQed
FIFO: First In First Out

F E D C Benqueue dequeueG A

9

Applications of the Q

• Hold jobs for a printer
• Store packets on network routers
• Hold memory “freelists”
• Make waitlists fair
• Breadth first search

Circular Array Q Data Structure

voi d enqueue(Obj ect x) {

Q[back] = x

back = (back + 1) % s i ze
}

Obj ect dequeue() {

x = Q[f r ont]

f r ont = (f r ont + 1) % si ze
r et ur n x

}

b c d e f

Q
0 size - 1

front back

This is pseudocode. Do not correct my semicolons.

When is the Q empty?

Are there error situations this
code will not catch?

What are some limitations of
this structure?

10

Q Example

enqueue R
enqueue O
dequeue
enqueue T
enqueue A
enqueue T
dequeue
dequeue
enqueue E
dequeue

Linked List Q Data Structure

b c d e f

front back

voi d enqueue(Obj ect x) {

i f (i s_empt y())

f r ont = back = new Node(x)

el se

back- >next = new Node(x)

back = back- >next

}

Obj ect dequeue() {

asser t (! i s_empt y)

r et ur n_dat a = f r ont - >dat a

t emp = f r ont

f r ont = f r ont - >next

del et e t emp

r et ur n t emp- >dat a

}

11

Circular Array vs. Linked List

LIFO Stack ADT

• Stack operations
– create
– destroy
– push
– pop
– top
– is_empty

• Stack property: if x is on the stack before y is
pushed, then x will be popped after y is
popped
LIFO: Last In First Out

A

B
C
D
E
F

E D C B A

F

12

Stacks in Practice

• Function call stack
• Removing recursion
• Balancing symbols (parentheses)
• Evaluating Reverse Polish Notation
• Depth first search

Array Stack Data Structure
S

0 size - 1

f e d c b

voi d push(Obj ect x) {

asser t (! i s_f ul l ())

S[back] = x
back++

}

Obj ect t op() {

asser t (! i s_empt y())
r et ur n S[back - 1]

}

back

Obj ect pop() {

back- -

r et ur n S[back]

}

bool i s_f ul l () {

r et ur n back == s i ze

}

13

Linked List Stack Data Structure

b c d e f

back

voi d push(Obj ect x) {

t emp = back

back = new Node(x)

back- >next = t emp

}

Obj ect t op() {

asser t (! i s_empt y())

r et ur n back- >dat a

}

Obj ect pop() {

asser t (! i s_empt y())

r et ur n_dat a = back- >dat a

t emp = back

back = back- >next

r et ur n r et ur n_dat a

}

Data structures you should
already know

• Arrays
• Linked lists
• Trees
• Queues
• Stacks

14

To Do

• Sign up on the cse326 mailing list
• Check out the web page
• Log on to a PC in the course labs and

access an instructional UNIX server
• Read Chapters 1 and 3 in the book

Coming Up

• Unix Tutorial
– Tuesday (tomorrow) 10:50, Sieg 322

• Multi-Lists
• Priority Queues and Heaps
• Templates Tutorial
• First homework

