
CSE 326: Proving asymptotic comparisons

Thursday, Jan 20, 2000

1 A little-o definition

1.1 First, Big-Ω

f(n) ∈ Ω(g(n)) means that there is at least one c > 0 and some n0 such for all
n > n0, f(n) ≥ c · g(n).

1.2 little-o

f(n) ∈ o(g(n)) means that for all c > 0 there exists some n0 such that for all
n > n0, f(n) < c · g(n).

1.3 BTW, another way of looking at little-o

little-o means that there’s no c that will satisfy the Big-Ω condition, since all c
don’t.

1.4 Alternate little-o definition (Warning: Calculus)

For any c, and for sufficiently large n, f(n) < c · g(n).
In other words,

f(n) ∈ o(g(n))

⇐⇒ limn→∞
f(n)
g(n) = 0

Similarly,

f(n) ∈ ω(g(n))

⇐⇒ limn→∞
f(n)
g(n) =∞

And, interestingly,

f(n) ∈ Θ(g(n))

⇐⇒ lim
n→∞

f(n)
g(n)

= k

for some finite constant k > 0.
(see p. 43 of the Weiss book)
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2 First proof: n ∈ o(n2).

We use the limit of the fraction format:

lim
n→∞

n

n2

= lim
n→∞

1
n

cancel out n

= 0

So it’s true.

3 Generalization - useful theorem

Let g(n) be a monotonically increasing function (mainly limn→∞ g(n) =∞).
Then cdotg(n) ∈ o(f(n) · g(n) if limn→∞ g(n) =∞.
Proof: use the fraction format.

lim
n→∞

g(n)
f(n) · g(n)

= lim
n→∞

1
f(n)

cancel out g(n)

= 0 if f(n) goes to ∞

4 An easy one now: nk ∈ o(nk+ε) if k, ε > 0

nk+ε = nknε.
Clearly, limn→∞ nε =∞ if ε > 0. So, by our above theorem, nk ∈ o(nεnk).

5 Same idea: logk n ∈ o(logk+ε n) if k, ε > 0

logk+ε n = (logk n)(logε n). And we have the same idea as above.

6 Another easy one: n ∈ o(n · log n)

Follows from our theorem, and the fact that limn→∞ log n =∞.

7 l’Hôpital’s Rule

lim
n→∞

f(n)
g(n)

⇐⇒ lim
n→∞

f ′(n)
g′(n)

f ′(n) is the first derivative of f(n).
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8 Using l’Hôpital’s Rule to show log n ∈ o(n)

Using the fraction format,

lim
n→∞

log n
n

= lim
n→∞

1/n
1

by l’Hôpital’s Rule

= lim
n→∞

1
n

= 0

9 logi ∈ o(nj) for i, j > 0

Look at what happens with the fractional format:

lim
n→∞

logi n
nj

= lim
n→∞

(logi−1 n)(1/n)i
jnj−1

the Chain rule

= lim
n→∞

logi−1 n)i
jnj

= lim
n→∞

logi−1 n)
nj

i/j is just a constant

Note: taking i/j out is kind of sloppy, since we used an = sign. But, it is
valid given that we’re only concerned about 0, some finite constant or ∞.

Now, we can prove it inductively (we just proved the induction step). The
base case is just logi ∈ o(nj) for j > 0 and 0 < i ≤ 1, which is pretty straight-
forward from what we’ve already done.
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10 Similar idea: ni ∈ o(jn) for i, j > 0

The induction step:

lim
n→∞

ni

jn

= lim
n→∞

ni

en ln j
by log rules

= lim
n→∞

ini−1

(ln j)en ln j

= lim
n→∞

ini−1

(ln j)en ln j

= lim
n→∞

ni−1

en ln j
eliminate constants

= lim
n→∞

ni−1

je

10.1 A funky theorem: log f(n) ∈ o(log g(n)) =⇒ f(n) ∈
o(g(n)c) for any c > 0

Proof: By the definition of little-o,

log f(n) ∈ o(log g(n))
→ ∀c > 0∃n0∀n > n0. log f(n) < c · log g(n)

Now, we add a constant to the right side of the inequality, which preserves
the little-o relation. We obtain

∀k∀c > 0∃n0∀n > n0. log f(n) < c · log g(n) + k

So, exponentiating both sides of the inequality.

∀k∀c > 0∃n0∀n > n0. log f(n) < c · log g(n) + k

→ ∀k∀c > 0∃n0∀n > n0.f(n) < 2kg(n)c

→ f(n) ∈ o(g(n)c)

We reached the definition for little-o, since 2k can take on all positive values
for some k

A corrolary is log f(n) ∈ o(log g(n)) =⇒ f(n) ∈ o(g(n)), by simply selecting
c = 1.
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Note that the reverse is not necessarily true. i.e. if f(n) ∈ o(g(n)) we don’t
necessarily know that log f(n) ∈ o(log g(n)). Can you think of a counterexam-
ple?

11 Interlude: log log n ∈ o(log n).

We do this using the fractional format, and by substituting m = 2n:

lim
n→∞

log log n
log n

= lim
n→∞

logm
m

do the substitution

and we know logm ∈ o(m) from before.
Note that it’s important that limn→∞ log n =∞, otherwise the substitution

wouldn’t necessarily be valid.

12 Using funky theorem: nk ∈ o((log n)log n) for
any k

We take log of both sides. Now, it turns out that

k log n ∈ o((log log n)(logn))

because the left side is Θ(logn), while the right side has an extra (log log n)
factor on it.

And fortunately we have

k log n = log(nk)
and (log log n)(log n) = log((log n)logn)

So, we can expontentiate both sides using the funky theorem, and get our
answer.

13 Using funky theorem: (log n)log n ∈ o(2k)
Same idea as the previous one.
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