CSE 326: Proving asymptotic comparisons

Thursday, Jan 20, 2000

1 A little-o definition

1.1 First, Big- Ω

 $f(n) \in \Omega(g(n))$ means that there is at least one c > 0 and some n_0 such for all $n > n_0$, $f(n) \ge c \cdot g(n)$.

1.2 little-o

 $f(n) \in o(g(n))$ means that for all c > 0 there exists some n_0 such that for all $n > n_0$, $f(n) < c \cdot g(n)$.

1.3 BTW, another way of looking at little-o

little-o means that there's noc that will satisfy the Big- Ω condition, since $all \, c$ don't.

1.4 Alternate little-o definition (Warning: Calculus)

For any c, and for sufficiently large n, $f(n) < c \cdot g(n)$. In other words,

$$f(n) \in o(g(n))$$
$$\iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

Similarly,

$$f(n) \in \omega(g(n))$$
$$\iff \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

And, interestingly,

$$\begin{array}{l} f(n)\in \Theta(g(n))\\ \Longleftrightarrow \quad \lim_{n\to\infty} \frac{f(n)}{g(n)}=k \end{array}$$

for some *finite* constant k > 0. (see p. 43 of the Weiss book)

2 First proof: $n \in o(n^2)$.

We use the limit of the fraction format:

$$\lim_{n \to \infty} \frac{n}{n^2}$$

$$= \lim_{n \to \infty} \frac{1}{n} \text{ cancel out } n$$

$$= 0$$

So it's true.

3 Generalization - useful theorem

Let g(n) be a monotonically increasing function (mainly $\lim_{n\to\infty} g(n) = \infty$). Then $cdotg(n) \in o(f(n) \cdot g(n)$ if $\lim_{n\to\infty} g(n) = \infty$. Proof: use the fraction format.

$$\lim_{n \to \infty} \frac{g(n)}{f(n) \cdot g(n)}$$

$$= \lim_{n \to \infty} \frac{1}{f(n)} \text{ cancel out } g(n)$$

$$= 0 \text{ if } f(n) \text{ goes to } \infty$$

4 An easy one now: $n^k \in o(n^{k+\varepsilon})$ if $k, \varepsilon > 0$

 $n^{k+\varepsilon} = n^k n^{\varepsilon}.$

Clearly, $\lim_{n\to\infty} n^{\varepsilon} = \infty$ if $\varepsilon > 0$. So, by our above theorem, $n^k \in o(n^{\varepsilon}n^k)$.

5 Same idea: $\log^k n \in o(\log^{k+\varepsilon} n)$ if $k, \varepsilon > 0$

 $\log^{k+\varepsilon} n = (\log^k n)(\log^{\varepsilon} n)$. And we have the same idea as above.

6 Another easy one: $n \in o(n \cdot \log n)$

Follows from our theorem, and the fact that $\lim_{n\to\infty} \log n = \infty$.

7 l'Hôpital's Rule

$$\lim_{n \to \infty} \frac{f(n)}{g(n)}$$
$$\iff \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

f'(n) is the first derivative of f(n).

8 Using l'Hôpital's Rule to show $\log n \in o(n)$

Using the fraction format,

$$\lim_{n \to \infty} \frac{\log n}{n}$$

$$= \lim_{n \to \infty} \frac{1/n}{1} \text{ by l'Hôpital's Rule}$$

$$= \lim_{n \to \infty} \frac{1}{n}$$

$$= 0$$

9 $\log^i \in o(n^j)$ for i, j > 0

Look at what happens with the fractional format:

$$\lim_{n \to \infty} \frac{\log^{i} n}{n^{j}}$$

$$= \lim_{n \to \infty} \frac{(\log^{i-1} n)(1/n)i}{jn^{j-1}} \quad \text{the Chain rule}$$

$$= \lim_{n \to \infty} \frac{\log^{i-1} n)i}{jn^{j}}$$

$$= \lim_{n \to \infty} \frac{\log^{i-1} n}{n^{j}} \quad i/j \text{ is just a constant}$$

Note: taking i/j out is kind of sloppy, since we used an = sign. But, it is valid given that we're only concerned about 0, some finite constant or ∞ .

Now, we can prove it inductively (we just proved the induction step). The base case is just $\log^i \in o(n^j)$ for j > 0 and $0 < i \le 1$, which is pretty straightforward from what we've already done.

10 Similar idea: $n^i \in o(j^n)$ for i, j > 0

The induction step:

$$\lim_{n \to \infty} \frac{n^{i}}{j^{n}}$$

$$= \lim_{n \to \infty} \frac{n^{i}}{e^{n \ln j}} \text{ by log rules}$$

$$= \lim_{n \to \infty} \frac{i n^{i-1}}{(\ln j) e^{n \ln j}}$$

$$= \lim_{n \to \infty} \frac{i n^{i-1}}{(\ln j) e^{n \ln j}}$$

$$= \lim_{n \to \infty} \frac{n^{i-1}}{e^{n \ln j}} \text{ eliminate constants}$$

$$= \lim_{n \to \infty} \frac{n^{i-1}}{j^{e}}$$

10.1 A funky theorem: $\log f(n) \in o(\log g(n)) \implies f(n) \in o(g(n)^c)$ for any c > 0

Proof: By the definition of little-o,

$$\log f(n) \in o(\log g(n))$$

$$\rightarrow \forall c > 0 \exists n_0 \forall n > n_0 . \log f(n) < c \cdot \log g(n)$$

Now, we add a constant to the right side of the inequality, which preserves the little-o relation. We obtain

 $\forall k \forall c > 0 \exists n_0 \forall n > n_0 . \log f(n) < c \cdot \log g(n) + k$

So, exponentiating both sides of the inequality.

$$\forall k \forall c > 0 \exists n_0 \forall n > n_0. \log f(n) < c \cdot \log g(n) + k$$

$$\rightarrow \forall k \forall c > 0 \exists n_0 \forall n > n_0. f(n) < 2^k g(n)^c$$

$$\rightarrow f(n) \in o(g(n)^c)$$

We reached the definition for little-o, since 2^k can take on all positive values for some k

A corrolary is $\log f(n) \in o(\log g(n)) \Longrightarrow f(n) \in o(g(n))$, by simply selecting c = 1.

Note that the reverse is not necessarily true. i.e. if $f(n) \in o(g(n))$ we don't necessarily know that $\log f(n) \in o(\log g(n))$. Can you think of a counterexample?

11 Interlude: $\log \log n \in o(\log n)$.

We do this using the fractional format, and by substituting $m = 2^n$:

$$\lim_{n \to \infty} \frac{\log \log n}{\log n}$$
$$= \lim_{n \to \infty} \frac{\log m}{m} \quad \text{do the substitution}$$

and we know $\log m \in o(m)$ from before.

Note that it's important that $\lim_{n\to\infty} \log n = \infty$, otherwise the substitution wouldn't necessarily be valid.

12 Using funky theorem: $n^k \in o((\log n)^{\log n})$ for any k

We take log of both sides. Now, it turns out that

$$k \log n \in o((\log \log n)(\log n))$$

because the left side is $\Theta(\log n),$ while the right side has an extra $(\log\log n)$ factor on it.

And fortunately we have

$$k \log n = \log(n^k)$$

and $(\log \log n)(\log n) = \log((\log n)^{\log n})$

So, we can expontentiate both sides using the funky theorem, and get our answer.

13 Using funky theorem: $(\log n)^{\log n} \in o(2^k)$

Same idea as the previous one.