CSE 326: Proving asymptotic comparisons

Thursday, Jan 20, 2000

1 A little-o definition

1.1 First, Big- Ω

$f(n) \in \Omega(g(n))$ means that there is at least one $c>0$ and some n_{0} such for all $n>n_{0}, f(n) \geq c \cdot g(n)$.

1.2 little-o

$f(n) \in o(g(n))$ means that for all $c>0$ there exists some n_{0} such that for all $n>n_{0}, f(n)<c \cdot g(n)$.

1.3 BTW, another way of looking at little-o

little-o means that there's no c that will satisfy the Big- Ω condition, since all c don't.

1.4 Alternate little-o definition (Warning: Calculus)

For any c, and for sufficiently large $n, f(n)<c \cdot g(n)$.
In other words,

$$
\begin{gathered}
f(n) \in o(g(n)) \\
\Longleftrightarrow \quad \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
\end{gathered}
$$

Similarly,

$$
\begin{gathered}
f(n) \in \omega(g(n)) \\
\Longleftrightarrow \quad \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty
\end{gathered}
$$

And, interestingly,

$$
\begin{aligned}
& f(n) \in \Theta(g(n)) \\
\Longleftrightarrow \quad & \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=k
\end{aligned}
$$

for some finite constant $k>0$.
(see p. 43 of the Weiss book)

2 First proof: $n \in o\left(n^{2}\right)$.

We use the limit of the fraction format:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{n}{n^{2}} \\
= & \lim _{n \rightarrow \infty} \frac{1}{n} \quad \text { cancel out } n \\
= & 0
\end{aligned}
$$

So it's true.

3 Generalization - useful theorem

Let $g(n)$ be a monotonically increasing function (mainly $\lim _{n \rightarrow \infty} g(n)=\infty$).
Then $\operatorname{cdotg}(n) \in o\left(f(n) \cdot g(n)\right.$ if $\lim _{n \rightarrow \infty} g(n)=\infty$.
Proof: use the fraction format.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{g(n)}{f(n) \cdot g(n)} \\
= & \lim _{n \rightarrow \infty} \frac{1}{f(n)} \quad \text { cancel out } g(n) \\
= & 0 \text { if } f(n) \text { goes to } \infty
\end{aligned}
$$

4 An easy one now: $n^{k} \in o\left(n^{k+\varepsilon}\right)$ if $k, \varepsilon>0$

$$
\begin{aligned}
& n^{k+\varepsilon}=n^{k} n^{\varepsilon} . \\
& \quad \text { Clearly, } \lim _{n \rightarrow \infty} n^{\varepsilon}=\infty \text { if } \varepsilon>0 . \text { So, by our above theorem, } n^{k} \in o\left(n^{\varepsilon} n^{k}\right) .
\end{aligned}
$$

5 Same idea: $\log ^{k} n \in o\left(\log ^{k+\varepsilon} n\right)$ if $k, \varepsilon>0$

$\log ^{k+\varepsilon} n=\left(\log ^{k} n\right)\left(\log ^{\varepsilon} n\right)$. And we have the same idea as above.

6 Another easy one: $n \in o(n \cdot \log n)$

Follows from our theorem, and the fact that $\lim _{n \rightarrow \infty} \log n=\infty$.

7 l'Hôpital's Rule

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)} \\
\Longleftrightarrow & \lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}
\end{aligned}
$$

$f^{\prime}(n)$ is the first derivative of $f(n)$.

8 Using l'Hôpital's Rule to show $\log n \in o(n)$

Using the fraction format,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\log n}{n} \\
= & \lim _{n \rightarrow \infty} \frac{1 / n}{1} \quad \text { by l'Hôpital's Rule } \\
= & \lim _{n \rightarrow \infty} \frac{1}{n} \\
= & 0
\end{aligned}
$$

$9 \quad \log ^{i} \in o\left(n^{j}\right)$ for $i, j>0$

Look at what happens with the fractional format:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\log ^{i} n}{n^{j}} \\
= & \lim _{n \rightarrow \infty} \frac{\left(\log ^{i-1} n\right)(1 / n) i}{j n^{j-1}} \quad \text { the Chain rule } \\
= & \lim _{n \rightarrow \infty} \frac{\left.\log ^{i-1} n\right) i}{j n^{j}} \\
= & \lim _{n \rightarrow \infty} \frac{\left.\log ^{i-1} n\right)}{n^{j}} \quad i / j \text { is just a constant }
\end{aligned}
$$

Note: taking i / j out is kind of sloppy, since we used an $=$ sign. But, it is valid given that we're only concerned about 0 , some finite constant or ∞.

Now, we can prove it inductively (we just proved the induction step). The base case is just $\log ^{i} \in o\left(n^{j}\right)$ for $j>0$ and $0<i \leq 1$, which is pretty straightforward from what we've already done.

10 Similar idea: $n^{i} \in o\left(j^{n}\right)$ for $i, j>0$

The induction step:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{n^{i}}{j^{n}} \\
= & \lim _{n \rightarrow \infty} \frac{n^{i}}{e^{n \ln j}} \quad \text { by log rules } \\
= & \lim _{n \rightarrow \infty} \frac{i n^{i-1}}{(\ln j) e^{n \ln j}} \\
= & \lim _{n \rightarrow \infty} \frac{i n^{i-1}}{(\ln j) e^{n \ln j}} \\
= & \lim _{n \rightarrow \infty} \frac{n^{i-1}}{e^{n \ln j}} \text { eliminate constants } \\
= & \lim _{n \rightarrow \infty} \frac{n^{i-1}}{j^{e}}
\end{aligned}
$$

10.1 A funky theorem: $\log f(n) \in o(\log g(n)) \Longrightarrow f(n) \in$ $o\left(g(n)^{c}\right)$ for any $c>0$

Proof: By the definition of little-o,

$$
\begin{aligned}
\log f(n) & \in o(\log g(n)) \\
\rightarrow \forall c>0 \exists n_{0} \forall n>n_{0} \cdot \log f(n) & <c \cdot \log g(n)
\end{aligned}
$$

Now, we add a constant to the right side of the inequality, which preserves the little-o relation. We obtain

$$
\forall k \forall c>0 \exists n_{0} \forall n>n_{0} \cdot \log f(n)<c \cdot \log g(n)+k
$$

So, exponentiating both sides of the inequality.

$$
\begin{array}{r}
\forall k \forall c>0 \exists n_{0} \forall n>n_{0} \cdot \log f(n)<c \cdot \log g(n)+k \\
\rightarrow \forall k \forall c>0 \exists n_{0} \forall n>n_{0} \cdot f(n)<2^{k} g(n)^{c} \\
\rightarrow f(n) \in o\left(g(n)^{c}\right)
\end{array}
$$

We reached the definition for little-o, since 2^{k} can take on all positive values for some k

A corrolary is $\log f(n) \in o(\log g(n)) \Longrightarrow f(n) \in o(g(n))$, by simply selecting $c=1$.

Note that the reverse is not necessarily true. i.e. if $f(n) \in o(g(n))$ we don't necessarily know that $\log f(n) \in o(\log g(n))$. Can you think of a counterexample?

11 Interlude: $\log \log n \in o(\log n)$.

We do this using the fractional format, and by substituting $m=2^{n}$:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\log \log n}{\log n} \\
= & \lim _{n \rightarrow \infty} \frac{\log m}{m} \text { do the substitution }
\end{aligned}
$$

and we know $\log m \in o(m)$ from before.
Note that it's important that $\lim _{n \rightarrow \infty} \log n=\infty$, otherwise the substitution wouldn't necessarily be valid.

12 Using funky theorem: $n^{k} \in o\left((\log n)^{\log n}\right)$ for any k

We take \log of both sides. Now, it turns out that

$$
k \log n \in o((\log \log n)(\log n))
$$

because the left side is $\Theta(\log n)$, while the right side has an extra $(\log \log n)$ factor on it.

And fortunately we have

$$
\begin{aligned}
k \log n & =\log \left(n^{k}\right) \\
\text { and }(\log \log n)(\log n) & =\log \left((\log n)^{\log n}\right)
\end{aligned}
$$

So, we can expontentiate both sides using the funky theorem, and get our answer.

13 Using funky theorem: $(\log n)^{\log n} \in o\left(2^{k}\right)$

Same idea as the previous one.

