

Terminology

Given an algorithm whose running time is $T(n)$
$-T(n) \in O(f(n))$ if there are constants c and n_{0} such that $\mathrm{T}(\mathrm{n}) \leq \mathrm{c} \mathrm{f}(\mathrm{n})$ for all $\mathrm{n} \geq \mathrm{n}_{0}$

- $1, \log \mathrm{n}, \mathrm{n}, 100 \mathrm{n} \in \mathrm{O}(\mathrm{n})$
$-\mathrm{T}(\mathrm{n}) \in \Omega(\mathrm{f}(\mathrm{n}))$ if there are constants c and n_{0} such that $T(n) \geq c f(n)$ for all $n \geq n_{0}$ - $\mathrm{n}, \mathrm{n}^{2}, 100 \cdot 2^{\mathrm{n}}, \mathrm{n}^{3} \log \mathrm{n} \in \Omega(\mathrm{n})$
$-T(n) \in \theta(f(n))$ if $T(n) \in O(f(n))$ and $T(n) \in \Omega(f(n))$ - $n, 2 n, 100 n, 0.01 n+\log n \in \theta(n)$
$-\mathrm{T}(\mathrm{n}) \in \mathrm{o}(\mathrm{f}(\mathrm{n}))$ if $\mathrm{T}(\mathrm{n}) \in \mathrm{O}(\mathrm{f}(\mathrm{n}))$ and $\mathrm{T}(\mathrm{n}) \notin \theta(\mathrm{f}(\mathrm{n}))$ - $1, \log \mathrm{n}, \mathrm{n}^{\mathrm{n} .99} \in \mathrm{o}(\mathrm{n})$

Silicon Downs			
Post \#1	Post \#2		Winner
$\mathrm{n}^{3}+2 \mathrm{n}^{2}$	$100 n^{2}+1000$		$\mathrm{O}\left(\mathrm{n}^{2}\right)$
$\mathrm{n}^{0.1}$	$\log \mathrm{n}$		$\mathrm{O}(\log \mathrm{n})$
$\mathrm{n}+100 \mathrm{n}^{0.1}$	$2 \mathrm{n}+10 \log \mathrm{n}$		TIE O(n)
$5 n^{5}$	$n!$		$\mathrm{O}\left(\mathrm{n}^{5}\right)$
$\mathrm{n}^{-15} 2^{\mathrm{n}} / 100$	$1000 \mathrm{n}^{15}$		$\mathrm{O}\left(\mathrm{n}^{15}\right)$
mn^{3}	$2^{\text {m }} \mathrm{n}$		IT DEPENDS
		6/26/00	3-3

Types of analysis

Orthogonal axes

- bound flavor
- upper bound (O, o)
- lower bound (Ω, ω)
- asymptotically tight (θ)
- analysis case
- worst case (adversary)
- average case
- best case
- "common" case
- analysis quality
- loose bound (any true analysis)
- tight bound (no better bound which is asyfiffertically differeftr)

FBI Finds Silicon Downs Fixed

- The fix sheet (typical growth rates in order)
- constant: $\quad \mathrm{O}(1)$
- logarithmic: $\quad \mathrm{O}(\log \mathrm{n}) \quad\left(\log _{\mathrm{k}} \mathrm{n}, \log \mathrm{n}^{2} \in \mathrm{O}(\log \mathrm{n})\right)$
- poly-log: $\quad \mathrm{O}\left(\log ^{\mathrm{k}} n\right)$
- linear: $\quad O(n)$
- log-linear: $\quad O(n \log n)$
- superlinear: $\quad \mathrm{O}\left(\mathrm{n}^{1+\mathrm{c}}\right) \quad(\mathrm{c}$ is a constant $>0)$
- quadratic: $\quad \mathrm{O}\left(\mathrm{n}^{2}\right)$
- cubic: $\quad \mathrm{O}\left(\mathrm{n}^{3}\right)$
- polynomial: $\quad \mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right) \quad(\mathrm{k}$ is a constant)
- exponential: $\quad \mathrm{O}\left(\mathrm{c}^{\mathrm{n}}\right) \quad(\mathrm{c} \text { is a cernlotant }>1)^{3-10}$

How Do We Justify Our
 Analysis?

- Code up programs and measure their behavior
- Pro: concrete, observable
- Con: may depend on individual computer or programmer skill or particular data set
- Techniques of mathematical proof
- Pro: independent of individual computer, programmer skill or particular data set
- Con: not always easy

Common Proof Techniques

- Counterexample
- show an example which does not fit with the theorem
- QED (the theorem is disproved)
- Contradiction
- assume the opposite of the theorem
- derive a contradiction

QED (the theorem is proven)

- Induction

Step 1. prove for a base case (e.g., $\mathrm{n}=1$)
Step 2. assume true for all values through some anonymous value (n)
Step 3. prove for the next value $(\mathrm{n}+1)$
Step 4. QED
Dickey's Step -1: Convince yourself it's true!

Another Induction Example

- A number is divisible by 3 iff the sum of its digits is divisible by three
- Step -1: What is the theorem saying? Is it really true?
- Base case(s):
- General case(s):

